Skip Nav Destination
Close Modal
Search Results for
magnesium treatment
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 939 Search Results for
magnesium treatment
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 31 August 2017
Image
Published: 01 December 2008
Image
Published: 01 December 1998
Image
in Metallurgy of Induction Melting Processes for Iron and Non-Iron Materials
> Induction Heating and Heat Treatment
Published: 09 June 2014
Image
Published: 31 August 2017
Fig. 25 Influence of sulfur addition (S add ) after magnesium treatment on the graphite nodularity, depending on initial Mg res . (a) 0.03% Mg res /0.004% S add . (b) 0.045% Mg res /0.012% S add
More
Image
Published: 31 August 2017
Fig. 2 Treatment converter for pure magnesium nodulization treatment. (a) Charge position. (b) Treating position. Source: Ref 3
More
Image
Published: 01 December 1998
Fig. 3 Chemical Treatment No. 9 (MIL-M-3171A) galvanic anodizing of magnesium alloys Solution No. Type of solution Constituents Amount, g/L (oz/gal) Operating temperature, °C (°F) Cycle time, min Tank material 1 Alkaline cleaner (a) (a) 88–100 (190–212) 3–10 Low
More
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006310
EISBN: 978-1-62708-179-5
... and outlines the most common and important requirements for controlling the composition of ductile iron. Treatment to produce ductile iron involves the addition of magnesium to change the form of the graphite, followed by or combined with inoculation of a silicon-containing material to ensure a graphitic...
Abstract
Unlike gray iron, which contains graphite flakes, ductile iron has an as-cast structure containing graphite particles in the form of small, rounded, spheroidal nodules in a ductile metallic matrix. This article discusses the raw materials that are used for ductile iron production and outlines the most common and important requirements for controlling the composition of ductile iron. Treatment to produce ductile iron involves the addition of magnesium to change the form of the graphite, followed by or combined with inoculation of a silicon-containing material to ensure a graphitic structure with freedom from carbides. The article describes the methods of magnesium treatment, control of magnesium content, and inoculation. It concludes with a discussion on the metallurgical controls of ductile iron production.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005903
EISBN: 978-1-62708-167-2
... Abstract Interplays of metallurgical factors, such as dissolved oxygen, carbon, and silicon content, that control the molten metal from melting to pouring, have a decisive influence on the quality of the castings. This article focuses on the magnesium treatment and desulfurization carried out...
Abstract
Interplays of metallurgical factors, such as dissolved oxygen, carbon, and silicon content, that control the molten metal from melting to pouring, have a decisive influence on the quality of the castings. This article focuses on the magnesium treatment and desulfurization carried out during inoculation and nucleation of molten cast iron, assisting in the formation of cast iron. The different types of cast irons are gray cast iron, nodular cast iron, compacted graphite iron, malleable cast iron, and alloyed cast iron. The article provides an overview of the melt treatment processes carried out in cast steel, wrought and cast aluminum, and copper materials.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006315
EISBN: 978-1-62708-179-5
... temperature; TES, temperature at the end of solidification Modification and Inoculation of Ductile Cast Iron The beginning of ductile iron production was initially based on either magnesium treatments (in the United States) or rare earth element (REE) treatments (in the United Kingdom). During...
Abstract
This article describes the modification and inoculation of cast iron, and schematically illustrates the major effects of inoculation in gray cast irons. Inoculation could be considered as a common liquid-state treatment for all commercial cast irons (gray/compacted/ductile irons), while modification is essential to produce compacted graphite iron (intermediate level) and ductile iron. The article discusses the most important aspects of a gray cast iron inoculation treatment and the factors influencing its inoculation efficiency. It describes the modification and inoculation of ductile cast iron and compacted graphite cast iron.
Image
Published: 01 December 2008
Fig. 18 Filter placement when a metallurgical operation (that is, magnesium treatment or inoculation of iron) occurs in the mold
More
Image
Published: 09 June 2014
Fig. 11 Tapping a 13.5 ton induction crucible furnace in a ladle for magnesium treatment and extracting fumes through the furnace hood
More
Image
Published: 31 August 2017
Fig. 1 General flow chart of gray cast iron processing with sand molding. Magnesium treatment for ductile iron processing is included.
More
Image
Published: 31 August 2017
Fig. 27 Flow chart for ductile iron inoculation improving and compacted graphite iron production by late sulfur addition, after magnesium treatment
More
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005294
EISBN: 978-1-62708-187-0
... solidification iron foundry casting melting molten metal treatment cast iron foundry inoculation pouring magnesium treatment production quality tests FOUNDRY PRACTICES critical to the production of cast irons include melting, alloying, molten metal treatment, pouring, and the design of feeding...
Abstract
This article reviews the production stages of iron foundry casting, with particular emphasis on the melting practices, molten metal treatment, and feeding of molten metal into sand molds. It discusses the molten metal treatments for high-silicon gray, high-nickel ductile, and malleable irons. Foundry practices are also described for compacted graphite, high-silicon ductile, and high-alloy white irons.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005328
EISBN: 978-1-62708-187-0
..., and the conditions for successful magnesium treatment for producing nodular graphite are similar or identical to those for conventional gray and ductile irons. The high alloy contents influence the eutectic carbon content; therefore, carbon levels in these alloys are lower. In many cases, hypereutectic compositions...
Abstract
This article discusses the melting and pouring practices, heat treatment, and applications of different types of high-alloy graphitic iron, namely, high-silicon gray irons, high-silicon ductile irons, nickel-alloyed austenitic irons, austenitic gray irons, austenitic ductile irons, and aluminum-alloyed irons.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003174
EISBN: 978-1-62708-199-3
... etched in 2% nital. 100× Ductile iron is made by treating low-sulfur liquid cast iron with an additive containing magnesium. This treatment is known as nodulizing or nodularization. The melt is usually inoculated just before or during casting with a silicon-containing alloy. To successfully make...
Abstract
Cast iron, which usually refers to an in situ composite of stable eutectic graphite in a steel matrix, includes the major classifications of gray iron, ductile iron, compacted graphite iron, malleable iron, and white iron. This article discusses melting, pouring, desulfurization, inoculation, alloying, and melt treatment of these major ferrous alloys as well as carbon and alloy steels. It explains the principles of solidification by describing the iron-carbon phase diagram, and provides a pictorial presentation of the basic microstructures and processing steps for cast irons.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006258
EISBN: 978-1-62708-169-6
... and composites. It discusses the microstructures used for the most common magnesium alloys used in metal-matrix composites, namely, magnesium-aluminum, magnesium-rare earth and magnesium-lithium alloys. The article focuses on the most common methods of heat treatment, including solution heat treatment...
Abstract
Magnesium-matrix composites (MgMCs) are very promising as structural materials because of their low density, high specific strength, and excellent castability. This article provides information on the characteristics, mechanical properties, and applications of magnesium alloys and composites. It discusses the microstructures used for the most common magnesium alloys used in metal-matrix composites, namely, magnesium-aluminum, magnesium-rare earth and magnesium-lithium alloys. The article focuses on the most common methods of heat treatment, including solution heat treatment, precipitation strengthening or aging, and annealing, applied to these alloys. Finally, it describes the microstructural aspects and precipitate-matrix relationships of MgMCs as well as the heat treatment methods for MgMCs.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.9781627081696
EISBN: 978-1-62708-169-6
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006318
EISBN: 978-1-62708-179-5
... as part of inoculants and treatment alloys and include elements such as aluminum, arsenic, boron, barium, bismuth, calcium, cadmium, cerium, lanthanum, magnesium, lead, antimony, selenium, tellurium, zinc, and zirconium. Trace element additions during melting are essential to control graphite nucleation...
Abstract
During the melting and solidification of cast irons, certain trace (minor) elements may unintentionally accumulate to an extent that they have a detrimental effect on the microstructure of castings. This article discusses the residual elements, trace elements, and tramp elements in cast irons. Elements that influence the matrix structure of cast irons are commonly classified as ferrite-promoting elements or pearlite-promoting elements. The article describes the effects of minor elements on microstructure and properties of cast irons. It discusses the use of a combination of tools to control the effects of minor elements on the structure and properties of cast irons. The article concludes with information on allowable levels of trace and tramp elements in cast irons.
1