1-20 of 203 Search Results for

magnesium recycling

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001118
EISBN: 978-1-62708-162-7
... on the recycling of nonferrous alloys, namely, aluminum, copper, magnesium, tin, lead, zinc, and titanium, providing details on the sources, consumption and classification of scrap, and the technological trends and developments in recycling. aluminum recycling copper recycling lead recycling magnesium...
Book Chapter

By John C. Bittence
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003222
EISBN: 978-1-62708-199-3
... Abstract This article focuses on the recycling of metals including iron and steel, stainless steel, superalloys, nickel, aluminum, copper, precious metals, lead, magnesium, tin, titanium, and zinc. It provides information on the identification and sorting of scrap metals and discusses...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003472
EISBN: 978-1-62708-195-5
... Aluminum oxide fiber Aluminum, magnesium Tungsten fiber Nickel, cobalt, iron Generally, recycling of these materials is based on recovery of the matrix materials and disposal of the reinforcement. Little information has been documented on the particular techniques used with titanium...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005275
EISBN: 978-1-62708-187-0
... entering the barrel through the injection nozzle by means of a solid plug of magnesium formed at the conclusion of each shot. The plug is ejected upon shot initiation and is entrapped in the sprue post, wherein it is conveniently recycled. Vacuum-assisted molding is simplified by the plug, which also...
Image
Published: 30 September 2015
, and increases magnesium utilization and recycling (up to 80%). More
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006484
EISBN: 978-1-62708-207-5
... authorities, and salvage yard operators, who occasionally purchase vehicles directly from their owners. As the amount of aluminum and magnesium in cars has increased, their value to the recycling industry has increased as well. This makes it more likely that obsolete automobiles will be returned for recycling...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005334
EISBN: 978-1-62708-187-0
... Abstract This article focuses on the variety of alloys, furnaces, and associated melting equipment as well as the casting methods available for manufacturing magnesium castings. These methods include sand casting, permanent mold casting, die casting, thixomolding, and direct chill casting...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003013
EISBN: 978-1-62708-200-6
... Abstract This article discusses postconsumer plastics recyclate quantities, the classification of plastics recycling into primary, secondary, tertiary, and quaternary categories, and how the life cycle of plastics is affected by recycling. The recycling processes of polyethylene terephthalate...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006572
EISBN: 978-1-62708-210-5
... Abstract Alloy 362.0, low-iron premium die-casting alloy, is made from recycled secondary metal scrap and was developed to have equivalent or better mechanical properties than Silafont-36 and/or Aural-2. This datasheet provides information on key alloy metallurgy, processing effects on physical...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005267
EISBN: 978-1-62708-187-0
.... An example of a typical runner, gate and overflow configuration for faucet fixture casting is shown. Temperature control for die casting is also discussed. The article explains some ejection and post-processing techniques used for the hot chamber die casting: robotics, recycling, and fluxing. hot...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003138
EISBN: 978-1-62708-199-3
.... In one method, the precipitated magnesium hydroxide is converted to magnesium chloride with hydrochloric acid, dried, and fed to the electrolytic cells. The chlorine formed in the electrolysis is converted to hydrochloric acid and recycled. Another method is to dry and calcine the magnesium hydroxide...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005272
EISBN: 978-1-62708-187-0
... deemed too expensive to enjoy widespread applications. Thus, the recent driving force to reduce semisolid processing costs has shifted research and development efforts toward rheocasting process variations. Thixomolding (Thixomat, Inc.), specific to the semisolid processing of magnesium, remains another...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005903
EISBN: 978-1-62708-167-2
... Abstract Interplays of metallurgical factors, such as dissolved oxygen, carbon, and silicon content, that control the molten metal from melting to pouring, have a decisive influence on the quality of the castings. This article focuses on the magnesium treatment and desulfurization carried out...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003774
EISBN: 978-1-62708-177-1
... Abstract Magnesium and its alloys are among the most difficult metals to prepare for metallographic examination. This article describes specimen preparation processes, including sectioning, mounting, grinding, and polishing. It discusses macro and microexamination techniques as well as related...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004161
EISBN: 978-1-62708-184-9
... characteristics of the ash sluice water and in part on the composition of coal ash. Table 1 shows the variations in coal ash composition with coal type. The soluble ash species of elements such as iron, calcium, sodium, magnesium, potassium, and a variety of trace elements produce a wide range of pH levels...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003169
EISBN: 978-1-62708-199-3
...—as an alloy, intermetallic, or surface-modified product—its usefulness depends on the continued usefulness of the entire system, which is generally cut short at some point, often by corrosion. In the present industrial environment, valuable metals cannot be discarded. Regeneration or recycling of metals back...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003087
EISBN: 978-1-62708-199-3
... design, cost analysis, manufacturing, recyclability, and performance. concurrent engineering design considerations material selection materials engineer ENGINEERING DESIGN can be defined as the creation of a product that satisfies a certain need. A good design should result in a product...
Book Chapter

Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006700
EISBN: 978-1-62708-210-5
... limits (<0.15%) for manganese and chromium to help improve formability for can forming. Alloy 5182 ( Table 1 ) contains an addition of 0.35% Mn to provide additional strength without incurring the fabrication difficulties that increased magnesium would have presented. Alloy 5182 composition limits...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006516
EISBN: 978-1-62708-210-5
... alloys, and coils of wire are marked as such ( Ref 8 ). These alloys were developed to optimize the conductivity-strength balance and are strengthened by higher amounts of iron and/or additions of copper or magnesium ( Ref 9 ), as shown in Table 3 . These higher-solute alloys, introduced by Alcoa (8076...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005306
EISBN: 978-1-62708-187-0
... of copper alloys, 10% Magnesium high-pressure die casting, 3% The articles in this Section, “Casting of Non-ferrous Alloys,” describe the shape casting of aluminum, copper, and zinc alloys along with articles on the continuous casting of aluminum and copper. Casting of magnesium alloys is detailed...