1-20 of 174 Search Results for

magnesium die-casting alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005334
EISBN: 978-1-62708-187-0
... Abstract This article focuses on the variety of alloys, furnaces, and associated melting equipment and on the casting methods available for manufacturing magnesium castings. The casting methods include sand casting, permanent mold casting, die casting, thixomolding, and direct chill casting...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003138
EISBN: 978-1-62708-199-3
...-production rates. Molten magnesium does not react with or solder to die steels, resulting in longer die life and increased productivity (dies last two to three times longer than with aluminum). There are three systems of magnesium alloys used commercially for high-pressure die casting: Mg-Al-Zn-Mn (AZ...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003820
EISBN: 978-1-62708-183-2
... corrosion rates over various exposure times for a standard alloy and a high-purity die-cast alloy in salt spray and in 5% NaCl continuous immersion. Fig. 8 Corrosion rates of die-cast magnesium in 5% NaCl salt spray and continuous-immersion exposures. Source: Ref 18 Analysis of die-cast...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003139
EISBN: 978-1-62708-199-3
... performance observed for cold-rolled steel and die-cast aluminum alloy 380 samples. Such results have led to the definition of the critical contaminant limits for two magnesium-aluminum alloys in both low- and high-pressure cast form and the introduction of improved high-purity versions of the alloys. Table...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006254
EISBN: 978-1-62708-169-6
... Abstract Magnesium alloys are used predominantly for high-pressure die-cast applications in which the use of a deliberate heat treatment is uncommon. This article provides information on the heat treatment designations for magnesium alloys. It describes the effects of grain size on magnesium...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005292
EISBN: 978-1-62708-187-0
... geometry must allow removal from the die cavity. Die casting is generally limited to metals with low melting points. Aluminum is the most commonly used, followed by zinc, magnesium, copper, tin, and lead. Zinc, tin, and lead alloys are considered to be low-melting-point alloys, while aluminum and...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005186
EISBN: 978-1-62708-187-0
... of the alloy and the temperature and composition of the mold. Usually, lead and zinc alloy castings are produced by slush casting. The ss is limited to the production of hollow castings and was used to produce lamp bases ( Ref 6 ). Manually operated die casting machines were patented as early as...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001310
EISBN: 978-1-62708-170-2
... their castability and light weight. In both painted and unpainted applications these alloys provide salt-water corrosion performance equal to or better than that of die cast aluminum and carbon steel. (See the article “Corrosion of Magnesium and Magnesium Alloys” in Corrosion, Volume 13 of ASM...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003998
EISBN: 978-1-62708-185-6
..., structural applications of magnesium are predominantly in the form of castings (high-pressure die castings, in particular). Wrought magnesium applications (including sheet, extrusions, and forgings) comprise only about 1% of the total magnesium market. Forging alloys are primarily produced from three major...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005268
EISBN: 978-1-62708-187-0
... horizontal die casting machine Abstract The cold chamber die casting process is used with higher-melting-point alloys such as aluminum and magnesium. This article discusses the components design of the cold chamber high-pressure die casting machine. It reviews the process parameters of the cold...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003175
EISBN: 978-1-62708-199-3
... employed. Some zinc castings have also been produced by the semisolid casting process. MAGNESIUM ALLOY CASTINGS can be produced by nearly all of the conventional casting methods, namely, sand, permanent and semipermanent mold, shell, investment, and die casting. The choice of a casting process...
Book Chapter

Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005307
EISBN: 978-1-62708-187-0
... advantageously used to separate entrapped metal from oxides. The principal alloying elements present in zinc die casting alloys include aluminum, magnesium, and copper. Manganese and silicon may be present as impurities in the remelt; chromium and nickel are often seen when plated scrap is remelted. In most...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003144
EISBN: 978-1-62708-199-3
... alloying element in copper, aluminum, magnesium, and other alloys; in wrought zinc alloys; and in zinc chemicals. The zinc coating applications of hot dip galvanizing, electrogalvanizing, plating, and thermal spray are presented. The use of zinc alloys in both gravity and pressure die castings is discussed...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005266
EISBN: 978-1-62708-187-0
... injection. The process varieties have many features in common with regard to die mechanical design, thermal control, and actuation. Four principal alloy families are commonly die cast: aluminum-, zinc-, magnesium-, and copper-base alloys. Lead, tin, and, to a lesser extent, ferrous alloys can also be die...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006288
EISBN: 978-1-62708-169-6
... only solid-solution alloys, but some wrought 4 xxx alloys (e.g., 4032) have suitable magnesium additions to make the alloys heat treatable with strengthening from Mg 2 Si. The wrought aluminum-lithium alloys comprise certain alloys in the 2 xxx and 8 xxx series. The age-hardenable cast alloys...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005267
EISBN: 978-1-62708-187-0
... than aluminum, magnesium, or copper alloys. However, a die design for casting the higher-melting-point alloys can be used for casting zinc alloys. The precision capabilities of zinc casting alloys vary with the casting size, and they are described in the most recent edition of NADCA Product...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005318
EISBN: 978-1-62708-187-0
... to Table 1 . Table 1 Steel and hardness recommendations for die casting dies and associated tooling Die components Fig. 1 part Alloy to be cast Tin, lead, zinc Aluminum, magnesium Copper, brass Cavity inserts 1 P20 at 290–330 HB (a) H13 at 42–48 HRC DIN 1.2367 at 38...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005276
EISBN: 978-1-62708-187-0
... the same as for conventional die casting. Driven by the need to conserve fuel, the trend toward lighter-weight construction materials continues unabated in the international automotive and other transportation markets. Aluminum and magnesium alloys are increasing their share of the automotive market...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006258
EISBN: 978-1-62708-169-6
... obtained by using alloys of low aluminum and zinc content, such as AM60 alloy. In high-pressure die-cast parts that solidify rapidly, the addition of silicon causes the formation of finely dispersed magnesium-silicon particles, which is actually the basis of Mg-Al-Si alloys. Additions of rare earth...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005301
EISBN: 978-1-62708-187-0
... boron calcium casting eutectic grain structure magnesium nucleation phosphorus hypoeutectic alloys eutectic alloys ALUMINUM-SILICON ALLOYS are widely used in components here good strength and light weight are required or where corrosion resistance and good castability are needed. However...