Skip Nav Destination
Close Modal
Search Results for
macroscopic properties
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 547 Search Results for
macroscopic properties
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003057
EISBN: 978-1-62708-200-6
... Abstract This article describes testing and characterization methods of ceramics for chemical analysis, phase analysis, microstructural analysis, macroscopic property characterization, strength and proof testing, thermophysical property testing, and nondestructive evaluation techniques...
Abstract
This article describes testing and characterization methods of ceramics for chemical analysis, phase analysis, microstructural analysis, macroscopic property characterization, strength and proof testing, thermophysical property testing, and nondestructive evaluation techniques. Chemical analysis is carried out by X-ray fluorescence spectrometry, atomic absorption spectrophotometry, and plasma-emission spectrophotometry. Phase analysis is done by X-ray diffraction, spectroscopic methods, thermal analysis, and quantitative analysis. Techniques used for microstructural analysis include reflected light microscopy using polarized light, scanning electron microscopy, transmission electron microscopy, energy dispersive analysis of X-rays, and wavelength dispersive analysis of X-rays. Macroscopic property characterization involves measurement of porosity, density, and surface area. The article describes testing methods such as room and high-temperature strength test methods, proof testing, fracture toughness measurement, and hardness and wear testing. It also explains methods for determining thermal expansion, thermal conductivity, heat capacity, and emissivity of ceramics and glass and measurement of these properties as a function of temperature.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003742
EISBN: 978-1-62708-177-1
..., dislocation boundaries, and macroscopic properties. It discusses three different microstructural types: cell blocks, TL blocks, and equiaxed subgrains. The article also emphasizes the behavior of metals and single-phase alloys processed under plastic deformation (dislocation slip) conditions. It provides...
Abstract
Microstructure and crystallographic texture are the key material features used in the continuous endeavor to relate the processing of a metal with its final properties. This article emphasizes several aspects of deformation microstructures, namely, microstructural evolution, dislocation boundaries, and macroscopic properties. It discusses three different microstructural types: cell blocks, TL blocks, and equiaxed subgrains. The article also emphasizes the behavior of metals and single-phase alloys processed under plastic deformation (dislocation slip) conditions. It provides information on the microstructural parameters, measurement techniques, and microstructural relationships, which assist in predicting the mechanical properties and recrystallization behavior of materials. The article concludes with an analysis of the general relationship between the microstructural parameters and properties.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006314
EISBN: 978-1-62708-179-5
... changes and reproduce most of the solidification microstructure features observed experimentally. cast iron cellular automaton modeling eutectic growth models macroscopic scale mechanical properties microscopic scale microstructure numerical models solidification solid-state transformation...
Abstract
The microstructure that develops during the solidification stage of cast iron largely influences the subsequent solid-state transformations and mechanical properties of the cast components. This article provides a brief introduction of methods that can be used for simulating the solidification microstructure of cast iron. Analytical as well as numerical models describing solidification phenomena at both macroscopic and microscopic scales are presented. The article introduces macroscopic transport equations and presents analytical microscopic models for solidification. These models include the dendrite growth models and the cooperative eutectic growth models. The article provides some solutions using numerical models to simulate the kinetics of microstructure formation in cast iron. It concludes with a discussion on cellular automaton (CA) technique that can handle complex topology changes and reproduce most of the solidification microstructure features observed experimentally.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005427
EISBN: 978-1-62708-196-2
... ). For instance, solute diffusion and precipitation in alloys is inherently an atomistic process but can manifest itself via changes in macroscopic properties, for example, yield strength or thermal growth. Hence, in constructing properties models in VAC, modeling tools have been used and linked from...
Abstract
Integrated computational materials engineering refers to the use of computer simulations that integrate mathematical models of complex metallurgical processes with computer models used in component and process design. This article outlines an example of a computer-aided engineering tool, such as virtual aluminum castings (VAC), developed and implemented for quickly developing durable cast aluminum power train components. It describes the procedures for the model development of the VAC system. These procedures include linking the manufacturing process to microstructure, linking microstructures to mechanical properties, linking material properties to performance prediction, and model validation and integration into the engineering process. The article discusses the benefits of the VAC system in process selection, process optimization, and improving the component design criteria.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004013
EISBN: 978-1-62708-185-6
..., billet configurations, and metal flow modes of coextrusion. It presents the analytical studies of coextrusion: deformation energy methods, lower-bound (slab) analyses, upper-bound analyses, and finite-element analyses. These studies are used to identify the regime of material properties and process...
Abstract
Coextrusion is defined as the simultaneous extrusion of two or more metals to form an integral product that can be carried out using conventional extrusion or drawing equipment at a temperature appropriate to the metal system being formed. This article discusses the applications, billet configurations, and metal flow modes of coextrusion. It presents the analytical studies of coextrusion: deformation energy methods, lower-bound (slab) analyses, upper-bound analyses, and finite-element analyses. These studies are used to identify the regime of material properties and process variables for which sound extrusions can be obtained. The article concludes with a discussion on the state-of-the-art of coextrusion that assists in developing process models, which accurately describe both the macroscopic and microscopic aspects of a process.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006331
EISBN: 978-1-62708-179-5
... reviews the dimensional stability in cast iron and discusses macroscopic and microscopic stresses in cast iron. additive strain decomposition cast iron casting deformation casting geometry dimensional stability internal casting stress macroscopic stress microscopic stress mold stability...
Abstract
In cast iron, residual stresses normally arise due to hindered thermal contraction, meaning that they are associated with the presence of constraints that prevent the natural, free volumetric variation of the material upon solid-state cooling. This article explains their mechanism of formation by introducing the scalar relation, known as the additive strain decomposition. The main factors influencing casting deformation are volume changes during solidification and cooling, phase transformations, alloy composition, thermal gradients, casting geometry, and mold stability. The article reviews the dimensional stability in cast iron and discusses macroscopic and microscopic stresses in cast iron.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006102
EISBN: 978-1-62708-175-7
... Abstract Particle image analysis of metal powders can be easily performed with optical macroscopes and microscopes. This article provides examples of the particle image analysis on powders used in the powder metallurgy industry. metal powders optical macroscopes optical microscopes...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001754
EISBN: 978-1-62708-178-8
.... Because the macro- and microstructure of metals and alloys often determine the behavior of the material, characterization of the effects of composition, processing, service conditions, and other such variables on the macro- and microstructure is frequently required. Typical structure-property...
Abstract
Optical metallography, one of the most common materials characterization techniques, uses visible light to magnify structural features of interest. This article discusses the use of optical methods to evaluate micro and macrostructure and relate it to process conditions and material behavior. It covers the steps involved in sample preparation, including sectioning, mounting, grinding, polishing, and etching, and presents several examples of macro and microanalysis on various metals and alloys.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007036
EISBN: 978-1-62708-387-4
... of a fracture mechanism and its cause is critical to evaluating and preventing future failures. In addition to characterizing the physical features of a failed component, evaluation of mechanical properties is an important element of fracture interpretation in carbon and alloy steels. Many fracture...
Abstract
In this article, a basic summary of fracture mechanisms in carbon and alloy steels is presented, along with numerous examples of these fractures. These examples include ductile fracture, brittle cleavage fracture, intergranular fracture, fatigue fracture, and environmentally assisted failure mechanisms.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003400
EISBN: 978-1-62708-195-5
... is that fiber failure occurs over a range of locations relative to the macroscopic crack plane. The subsequent pullout of broken fibers leads to additional shielding of the crack tip. From a macroscopic viewpoint, the fracture properties of CFCCs differ from those of metals in three important respects...
Abstract
One of the key attributes of continuous fiber-reinforced ceramic composites (CFCCs) is their ability to undergo inelastic straining upon mechanical loading. This article reviews the mechanics of inelastic deformation and fracture of CFCCs, as needed for the development of damage-tolerant failure prediction methodologies for use in engineering design. It outlines a general framework for the description of fracture in structural materials in the presence of notches and cracks. The article describes the common classes of fracture behavior of CFCCs and presents the constitutive laws needed to describe crack-tip inelasticity. It demonstrates the effects of inelasticity on crack-tip stress fields and addresses the environmental degradation effects on damage tolerance.
Book Chapter
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006937
EISBN: 978-1-62708-395-9
... Abstract Optical testing of plastics includes the characterization of materials and the analysis of optical components. If a material is tested for transmission, haze, yellowness, and refractive index, the knowledge of its optical properties is nearly complete. For optical components, surface...
Abstract
Optical testing of plastics includes the characterization of materials and the analysis of optical components. If a material is tested for transmission, haze, yellowness, and refractive index, the knowledge of its optical properties is nearly complete. For optical components, surface irregularity, birefringence, and internal contamination must also be considered. These characteristics are a function of the material and the fabrication method. Gloss and color also are affected by the base material and measured as optical properties.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003027
EISBN: 978-1-62708-200-6
... optical testing optical transmission photoelastic measurements physical properties plastics refractive index surface characteristics yellowness OPTICAL TESTING of plastics includes characterization of materials and analysis of optical components. If a material is tested for transmission, haze...
Abstract
Optical testing of plastics includes characterization of materials and analysis of optical components. This article focuses on procedures for testing various characteristics of optical components, including transmission and haze, yellowness, refractive index, birefringence, as well as surface irregularity, contamination, gloss, and color. It provides a short note on ad hoc testing, which is beneficial for practical applications in which lenses, prisms, and light pipes are being used and tested, as other test instruments are often not available.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005424
EISBN: 978-1-62708-196-2
... the symmetries are anisotropies of the mechanical properties, both elastic and plastic, of the individual crystals. Anisotropy is evident even at the continuum scale in aggregates of crystals having preferred orientations of the crystal lattices, known as crystallographic texture. The behaviors observed during...
Abstract
This article provides an explanation on how crystal plasticity is implemented within finite element formulations by the use of physical length scales: crystal scale and continuum scale. It provides theoretical formulations for kinematic framework for deforming crystals and polycrystals, elastic and plastic behaviors of single crystals, refinements to the single-crystal constitutive, and crystal-scale finite-element. The article also presents examples that illustrate the capabilities of the formulations at the length scales.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007035
EISBN: 978-1-62708-387-4
... austenite cools below the eutectoid temperature (730 °C or 390 °F). Most cast iron grades are used in the as-cast condition. In some instances, to improve certain properties such as hardness, strength, toughness, or wear resistance, iron castings may be heat-treated before usage. Cast Iron Types...
Abstract
The cast iron family includes several different groups, including gray iron, ductile iron, compacted graphite iron, malleable iron, white iron, and many different grades within each of these alloy groups. This article addresses issues specific to gray iron, but in many instances the discussion can be related to the other cast iron groups and the various grades within those groups. It discusses the usage of techniques and procedures in cast iron fractography. The article presents a list of common defects that can initiate failure.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003469
EISBN: 978-1-62708-195-5
... Continuous fiber reinforced ceramic-matrix composites retain many of the characteristics of monolithic advanced ceramics (for example, erosion and corrosion resistance, stiffness, and high-temperature properties) while avoiding the main drawback of monolithic ceramics (that is, brittleness) by exhibiting...
Abstract
Interpretation of failures of ceramic-matrix composites, and in particular continuous fiber reinforced ceramic-matrix composites is complicated by the complex structure of the composite material. This article describes the failure characteristics and evidence of failure mechanisms of these composites, with illustrations.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002349
EISBN: 978-1-62708-193-1
... the cause of cracking or crack growth. This article discusses the macroscopic and microscopic basis of understanding and modeling fracture resistance of metals. It describes the four major types of failure modes in engineering alloys, namely, dimpled rupture, ductile striation formation, cleavage...
Abstract
The cracking process occurs slowly over the service life from various crack growth mechanisms such as fatigue, stress-corrosion cracking, creep, and hydrogen-induced cracking. Each of these mechanisms has certain characteristic features that are used in failure analysis to determine the cause of cracking or crack growth. This article discusses the macroscopic and microscopic basis of understanding and modeling fracture resistance of metals. It describes the four major types of failure modes in engineering alloys, namely, dimpled rupture, ductile striation formation, cleavage or quasicleavage, and intergranular failure. Certain fundamental characteristics of fracture observed in precipitation-hardening alloys, ferrous alloys, titanium alloys are also discussed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003539
EISBN: 978-1-62708-180-1
... overload fracture may be more or less ductile or brittle, depending on notched or precracked properties of the material (see the articles “Overload Failures” and “Mechanisms and Appearances of Ductile and Brittle Fracture in Metals” in this Volume). Macroscopic Appearance of Fatigue Fracture...
Abstract
This article commences with a summary of fatigue processes and mechanisms. It focuses on fractography of fatigue. Characteristic fatigue fracture features that can be discerned visually or under low magnification are described. Typical microscopic features observed on structural metals are presented subsequently, followed by a brief discussion of fatigue in nonmetals. The article reviews the various macroscopic and microscopic features to characterize the history and growth rate of fatigue in metals. It concludes with a description of fatigue of polymers and composites.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006776
EISBN: 978-1-62708-295-2
... to failure analysis. At least some knowledge of environmental and service conditions is usually necessary. Evaluation of loading conditions, mechanical properties, microstructure, and surface conditions, often in conjunction with fractography, also provides useful information regarding the fundamental cause...
Abstract
Fatigue failure of engineering components and structures results from progressive fracture caused by cyclic or fluctuating loads. Fatigue is an important potential cause of mechanical failure, because most engineering components or structures are or can be subjected to cyclic loads during their lifetime. This article focuses on fractography of fatigue. It provides an abbreviated summary of fatigue processes and mechanisms: fatigue crack initiation, fatigue crack propagation, and final fracture,. Characteristic fatigue fracture features that can be discerned visually or under low magnification are then described. Typical microscopic features observed on structural metals are presented subsequently, followed by a brief discussion on fatigue in polymers and polymer-matrix composites.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005544
EISBN: 978-1-62708-197-9
... and physical properties, phase transformations, and chemical properties. Sente Software Ltd. http://www.sentesoftware.co.uk/jmatpro.aspx OOF OOF Software is designed to help materials scientists calculate macroscopic properties from images of real or simulated microstructures. It reads an image, assigns...
Abstract
This article demonstrates the depth and breadth of commercial and third-party software packages available to simulate metals processes. It provides a representation of the spectrum of applications from simulation of atomic-level effects to manufacturing optimization. The article tabulates the software name, function or process applications, vendor or developer, and website information.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006021
EISBN: 978-1-62708-175-7
... Abstract This article discusses the process details of metal powder injection molding of microcomponents and the powder particle characteristics of feedstock and property requirements of binders. It reviews important characteristics to be considered in the processing steps: venting, channel...
Abstract
This article discusses the process details of metal powder injection molding of microcomponents and the powder particle characteristics of feedstock and property requirements of binders. It reviews important characteristics to be considered in the processing steps: venting, channel diameters, binder segregation, binder degradation, feedstock supply, temperature control, demolding, debinding, and sintering. Finally, the article provides information on powder injection molding mold-filling simulation and two-component powder injection molding, offering a method for high-volume production of microcomponents made of multifunctional materials.
1