Skip Nav Destination
Close Modal
Search Results for
machinability
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 4491 Search Results for
machinability
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006103
EISBN: 978-1-62708-175-7
... Abstract Machinability is more important in extending the applications of powder metallurgy (PM). This article provides an overview of the machining process and machinability measurement of PM steels. It discusses various approaches to improve machinability, including the closure of porosity...
Abstract
Machinability is more important in extending the applications of powder metallurgy (PM). This article provides an overview of the machining process and machinability measurement of PM steels. It discusses various approaches to improve machinability, including the closure of porosity, green machining, presintering, microcleanliness improvement, free-machining additives, microstructure modification, and improvements in tool materials. The effects of free-machining agents on machinability and the sintered properties of PM steels are also reviewed.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003191
EISBN: 978-1-62708-199-3
... Abstract An understanding of the influence of microstructure on machinability can provide an insight into more efficient machining and the correct solution to problems. Providing numerous microstructures to depict examples, this article describes the relationship between the microstructure...
Abstract
An understanding of the influence of microstructure on machinability can provide an insight into more efficient machining and the correct solution to problems. Providing numerous microstructures to depict examples, this article describes the relationship between the microstructure and machinability of cast irons, steels, and aluminum alloys. It presents data on hardness values and the effect of the matrix microstructure of cast iron on tool life. It also explains how a higher inclusion count improves the machinability of steels and why aluminum alloys can be machined at very high speeds.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001033
EISBN: 978-1-62708-161-0
... Abstract The machinability of carbon and alloy steels is affected by many factors, such as the composition, microstructure, and strength level of the steel; the feeds, speeds, and depth of cut; and the choice of cutting fluid and cutting tool material. This article describes the influence...
Abstract
The machinability of carbon and alloy steels is affected by many factors, such as the composition, microstructure, and strength level of the steel; the feeds, speeds, and depth of cut; and the choice of cutting fluid and cutting tool material. This article describes the influence of the various attributes of carbon and alloy steels on machining characteristics. It lists the relative machinability ratings for some plain carbon steels, standard resulfurized steels, and several alloy steels. The addition of lead to carbon steels is one of the means of increasing the machinability of the steel and improving the surface finish of machined parts. Low carbon content of carburizing steels may be beneficial to tool life and production rate. The sulfur content of through-hardening alloy steels can significantly affect machining behavior. Cold drawing generally improves the machinability of steels containing less than about 0.2% carbon.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002177
EISBN: 978-1-62708-188-7
... Abstract This article discusses the factors to be considered in selecting and evaluating machining tests for the purpose of evaluating cutting tool performance and workpiece machinability. It provides a brief description of cutting tool materials, such as high-speed steels, uncoated and coated...
Abstract
This article discusses the factors to be considered in selecting and evaluating machining tests for the purpose of evaluating cutting tool performance and workpiece machinability. It provides a brief description of cutting tool materials, such as high-speed steels, uncoated and coated carbides, cermets, ceramics, cubic boron nitride, and polycrystalline diamond. The article considers the matrices that represent the range of tests performed on candidate cutting tool materials: the workpiece matrix, the property matrix, and the operation matrix. Various machine tests used to evaluate cutting tools, including the impact test, turning test, and facing test, are described. The article lists the factors to be taken into consideration in measuring the machinability of a material. The article presents general recommendations for proper chip groove selection on carbide tools and concludes with information on machining economics.
Image
Published: 01 January 1990
Fig. 2 Distribution of machinability ratings for B1112 and B1113 steels. Source: Ref 6
More
Image
Published: 01 January 1990
Fig. 4 Correlations among machinability ratings for different materials based on recommended speeds for turning and for boring with HSS tools. See text for details. Turning Boring Turning Boring 95 94 62 56 100 100 57 56 148 141 53 44 90 88 88 85 162 159
More
Image
Published: 01 January 1990
Fig. 11 Influence of size and shape of sulfide inclusions on machinability. Two steels, identical in composition except for silicon content, exhibited different machinability ratings that were traced to differences in the size and shape of MnS inclusions. Source: Ref 12 Chemical
More
Image
Published: 01 January 1990
Fig. 33 Comparison of the machinability of ductile and gray irons. (a) Metal removal rates. (b) Tool life. Source: Ref 20
More
Image
Published: 30 September 2015
Fig. 11 Influence of carbon contents on machinability of ASC100.29 2% Cu. Drill, high-speed steel; point angle, 118°; feed rate, 0.06 mm/rev (0.002 in./rev); D = 4 mm (0.16 in.); criterion, total failure
More
Image
Published: 30 September 2015
Fig. 13 Machinability of 80Cu-20Zn brasses. Sintered in hot zone at 870 °C (1600 °F) in a dissociated ammonia atmosphere
More
Image
Published: 01 January 1990
Fig. 33 Effect of percent cold draft on machinability in a screw machine test for an enhanced-machining version of S30400. Termination is defined as a 0.075 mm (0.003 in.) increase in the diameter of the part being cut.
More
Image
Published: 01 January 1990
Fig. 34 Effect of percent cold draft on machinability in a screw machine test for an enhanced-machining version of S30400. Termination is defined as a 0.075 mm (0.003 in.) increase in the diameter of the part being cut.
More
Image
Published: 01 January 1990
Fig. 36 Effect of copper and manganese contents on machinability in a drill test for a free-machining chromium-manganese-nickel austenitic stainless steel. Source: Ref 81
More
Image
Published: 01 January 1990
Fig. 37 Effect of carbon and nitrogen contents on machinability in a tool life test for a free-machining 18Cr-9Ni-3Mn austenitic stainless steel. Source: Ref 85
More
Image
Published: 01 January 1990
Fig. 40 Comparison of machinability in a drill penetration test for a duplex stainless steel (S32950), a high-nitrogen austenitic stainless steel (S20910), and a lower-nitrogen austenitic stainless steel (S31600)
More
Image
Published: 01 January 1990
Fig. 41 General comparison of machinability of stainless steels compared with AISI B1112. Rating based on 100% for AISI B1112 using high-speed steel tools. Source: Ref 88
More
Image
Published: 01 January 1989
Fig. 7 Effect of sulfide shape on machinability in a drill test for S30300 austenitic stainless steel. Source: Ref 9
More
Image
Published: 01 January 1989
Fig. 10 Effect of manganese-to-sulfur ratio on machinability in a drill test for a free-machining martensitic stainless steel. Source: Ref 16
More
Image
Published: 01 January 1989
Fig. 12 Comparison of the effect of selenium and sulfur on machinability in a drill test for a 13.5% Cr martensitic stainless steel at 19 to 21 HRC. Source: Ref 24
More
1