Skip Nav Destination
Close Modal
Search Results for
low-temperature fracture toughness
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1066
Search Results for low-temperature fracture toughness
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001037
EISBN: 978-1-62708-161-0
... Abstract Critical structural components must be fabricated from steels that exhibit adequate low-temperature fracture toughness because of the serious consequences of failure due to brittle fracture. This article reviews fracture resistance assessment procedures for welded joints and includes...
Abstract
Critical structural components must be fabricated from steels that exhibit adequate low-temperature fracture toughness because of the serious consequences of failure due to brittle fracture. This article reviews fracture resistance assessment procedures for welded joints and includes discussions on fatigue crack growth and fracture toughness. It presents the fracture toughness requirements specified by different design codes, summarizes the specifications for offshore structural steels provided by international standards organizations, and discusses the applications of these specifications. The article also focuses on advances made in steel technology and the impact of these advances on the fracture toughness of steel.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006325
EISBN: 978-1-62708-179-5
... from a high nickel content (18 to 38%). Nickel stabilizes austenite at room temperature and gives good corrosion resistance. Addition of manganese and chromium is used to improve corrosion resistance (at high and low temperatures), fracture toughness at low temperatures, or to improve creep resistance...
Abstract
The mechanical properties of ductile cast irons are determined largely by the microstructure of the steel matrix in combination with the shape, size, and distribution of the graphite nodules. This article describes the designation of ductile cast irons according to the ASTM International designation system and reviews standard-grade ductile cast irons. An overview of the most commonly used standards related to designation and specification of ductile cast iron is presented in a table. This article discusses the use of low-alloy ductile cast irons at elevated temperatures and the chemical compositions and some mechanical properties of austenitic ductile cast irons. The article concludes with a discussion on heat treatment of austempered ductile iron.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002397
EISBN: 978-1-62708-193-1
.... It addresses fatigue crack propagation and sustained-load crack propagation, as well as the fundamental aspects of fracture in steels. The article illustrates the effects of variations in the alloy chemistry, microstructure, temperature, strain rate, and environment on various fracture toughness or crack...
Abstract
This article summarizes the metallurgy of carbon and alloy steels, followed by discussions on their major mechanical properties, namely, static fracture toughness, dynamic fracture toughness, fatigue or sustained-load crack growth rates, and fatigue or sustained-load thresholds. It addresses fatigue crack propagation and sustained-load crack propagation, as well as the fundamental aspects of fracture in steels. The article illustrates the effects of variations in the alloy chemistry, microstructure, temperature, strain rate, and environment on various fracture toughness or crack growth rate parameters.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003104
EISBN: 978-1-62708-199-3
... and heat treatment on fracture toughness of steels. carbon steels classification of wear effect of alloying elements fatigue failure forms of embrittlement fracture toughness low-alloy steels notch toughness wear resistance Wear Resistance of Steels WEAR of metals occurs...
Abstract
Wear of metals occurs by plastic displacement of surface and near-surface material, and by detachment of particles that form wear debris. This article presents a table that contains the classification of wear. It describes the testing and evaluation of wear and talks about the abrasive wear, lubrication and lubricated wear, and selection of steels for wear resistance. The article discusses the effect of alloying elements, composition, and mechanical properties of carbon and low-alloy steels at elevated temperatures. It talks about the fatigue resistance characteristics of steels, and describes the forms of embrittlement associated with carbon and low-alloy steels. The article provides information on the effect of composition, manufacturing practices, and microstructure on notch toughness of steels. Finally, it explains the effects of alloy elements, inclusion content, microstructure and heat treatment on fracture toughness of steels.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002398
EISBN: 978-1-62708-193-1
... be considered as the onset of rapid fracture. Plane-strain fracture toughness of cast low-alloy steels at room temperature Table 5 Plane-strain fracture toughness of cast low-alloy steels at room temperature Alloy type Heat treatment (a) Yield strength, 0.2% offset Plane-strain fracture...
Abstract
This article summarizes the general fatigue and fracture properties of cast steels, namely, toughness, fatigue, and component design factors such as section size and discontinuities. It describes the various factors that influence fatigue of cast steels. These factors include section size, defect size, stress modes, and waveform types. The article discusses various fracture mechanics in cast steels: cyclic stress-strain behavior and low- and high-cycle fatigue life behavior; plane-stress fracture toughness; plane-strain fracture toughness; constant-amplitude fatigue crack initiation and growth; and variable-amplitude fatigue crack initiation and growth.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002404
EISBN: 978-1-62708-193-1
... at elevated temperatures. In addition, AISI type 300-series stainless steels are the most widely used structural alloys for cryogenic applications, because they exhibit high strength, ductility, and fracture toughness properties as well as low thermal expansion and low magnetic permeability. Extensive...
Abstract
This article describes the fracture toughness behavior of austenitic stainless steels and their welds at ambient, elevated, and cryogenic temperatures. Minimum expected toughness values are provided for use in fracture mechanics evaluations. The article explains the effect of crack orientation, strain rate, thermal aging, and neutron irradiation on base metal and weld toughness. It discusses the effect of cold-work-induced strengthening on fracture toughness. The article examines the fracture toughness behavior of aged base metal and welding-induced heat-affected zones. It concludes with a discussion on the Charpy energy correlations for aged stainless steels.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001040
EISBN: 978-1-62708-161-0
... on notch toughness. Fracture appearance transition temperature (50% shear FATT) in plain carbon steel (0.10% C) at three manganese levels (0.4, 0.7, and 1.2% Mn) varies with nitrogen content. The beneficial effect of manganese is particularly evident at low levels of nitrogen. Fig. 20 Interactive...
Abstract
Notch toughness is an indication of the capacity of a steel to absorb energy when a stress concentrator or notch is present. The notch toughness of a steel product is the result of a number of interactive effects, including composition, deoxidation and steelmaking practices, solidification, and rolling practices, as well as the resulting microstructure. All carbon and high-strength low-alloy (HSLA) steels undergo a ductile-to-brittle transition as the temperature is lowered. The composition of a steel, as well as its microstructure and processing history, significantly affects both the ductile-to-brittle transition temperature range and the energy absorbed during fracture at any particular temperature.. Th article focuses on various aspects of notch toughness including the effects of composition and microstructure, general influence of manufacturing practices and the interactive effects that simultaneously influence notch toughness. With the exception of working direction, most of the same chemical, microstructural, and manufacturing factors that influence the notch toughness of wrought steels also apply to cast steels. The Charpy V-notch test is used worldwide to indicate the ductile-to-brittle transition of a steel. While Charpy results cannot be directly applied to structural design requirements, a number of correlations have been made between Charpy results and fracture toughness.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003305
EISBN: 978-1-62708-176-4
...-to-Brittle Fracture Transition Traditionally, the notch-toughness characteristics of low- and intermediate-strength steels have been described in terms of the transition from ductile to brittle behavior as test temperature increases. Most structural steels can fail in either a ductile or a brittle...
Abstract
The fracture-mechanics technology has significantly improved the ability to design safe and reliable structures and identify and quantify the primary parameters that affect structural integrity of materials. This article provides a discussion on fracture toughness of notched materials by explaining the ductile-to-brittle fracture transition and by correlating KId, KIc, and Charpy V-notch impact energy absorptions. It highlights the effects of constraint, temperature, and loading rate on the fracture transition. The article discusses the applications of fracture mechanism in limiting of operating stresses. It describes the mechanisms, testing methods, and effecting parameters of two main categories of fracture mechanics: linear-elastic fracture mechanics and elastic-plastic fracture mechanics. The article concludes with a discussion on the three major progressive stages of fatigue: crack initiation, crack growth, and fracture on the final cycle.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001464
EISBN: 978-1-62708-173-3
... applications where their limited ductility is acceptable ( Ref 8 , 9 , 10 ). The 18Ni maraging steel and the titanium alloy do not show a transition from ductile to brittle fracture at low temperatures, as do 9Ni and other lower-nickel-content steels ( Ref 1 , 2 , 9 ). No data for weld toughness were found...
Abstract
Cryogenic temperatures cause many structural alloys to become brittle, which is an unacceptable condition in most structural applications and is rectified by optimizing the weld composition. Although nonmatching weld compositions are most appropriate, differences between the welds and parent material in terms of thermal contraction, corrosion, and other factors must be considered. This article discusses these differences and describes the effect of these factors on the choice of the weld filler metal. It also provides a detailed discussion on the effects of cryogenic services on mechanical properties of the parent metal.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006457
EISBN: 978-1-62708-210-5
... on the assumption that unstable crack growth develops in elastically stressed material, the fracture toughness approach is applicable primarily to those relatively high-strength alloys with relatively low ductility. The type of brittle fracture behavior assumed in the development of linear elastic fracture...
Abstract
This article discusses the concepts underlying linear elastic fracture mechanics and elastic-plastic fracture mechanics as well as their importance in characterizing the fracture behavior of the high-strength aluminum alloys. It describes the three methods used for analyzing elastic-plastic fracture, namely R-curve concept, J-integral concept, and crack tip opening displacement method. The article considers the primary measures used to assess the toughness of aluminum alloy castings and wrought alloys: notch toughness, tear resistance, and plane-strain fracture toughness.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002379
EISBN: 978-1-62708-193-1
... films of carbides at lath boundaries. This leads to low fracture toughness due to easy crack propagation along the lath boundaries at low tempering temperatures. However, at higher tempering temperatures, elimination of continuous carbide film by spheroidization increases the fracture toughness...
Abstract
Fracture mechanics is a multidisciplinary engineering topic that has foundations in both mechanics and materials science. This article summarizes the microstructural aspect of fracture resistance in structural materials. It provides a discussion on basic fracture principles and schematically illustrates the mechanism of crack propagation. The article describes the fracture resistance of high-strength steels, aluminum alloys, titanium alloys, and composites such as brittle matrix-ductile phase composites and metal-matrix composites. It also lists the effects of microstructural variables on fracture toughness of steels, aluminum alloys, and titanium alloys.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006809
EISBN: 978-1-62708-329-4
... mitigation storage tanks METAL TEMPERATURE highly influences the fracture toughness of carbon and low-alloy steel materials. At low temperatures, the material tends to behave in a brittle manner, making it much more susceptible to sudden fracture without warning. At high temperatures, the material...
Abstract
A detailed fracture mechanics evaluation is the most accurate and reliable prediction of process equipment susceptibility to brittle fracture. This article provides an overview and discussion on brittle fracture. The discussion covers the reasons to evaluate brittle fracture, provides a brief summary of historical failures that were found to be a result of brittle fracture, and describes key components that drive susceptibility to a brittle fracture failure, namely stress, material toughness, and cracklike defect. It also presents industry codes and standards that assess susceptibility to brittle fracture. Additionally, a series of case study examples are presented that demonstrate assessment procedures used to mitigate the risk of brittle fracture in process equipment.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002351
EISBN: 978-1-62708-193-1
... provides an overview of some of the major microstructural considerations in carbon and alloy steels that affect the fracture toughness, such as the ferrite grain size for low-temperature fracture, the prior-austenite grain size, the size, spacing, and character of inclusions, and phase transformations...
Abstract
This article reviews the basic processes of fracture and fatigue and shows how these processes occur in materials. It presents an overview of the fatigue mechanisms and some related models for appropriate classes of materials, such as carbon and alloy steels, aluminum alloys, and titanium alloys. Microstructural factors that affect the fracture toughness of these materials, are discussed. The article describes fatigue crack propagation (FCP) mechanisms and related models. It also analyzes FCP behavior in these materials, with an emphasis on general microstructural factors.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007026
EISBN: 978-1-62708-387-4
... and fracture behavior of tensile specimens. The purpose of this article is to summarize the work on cryogenic strength and toughness and to present the fractography of aluminum alloys. While testing at ambient temperature is rather simple and is widespread for the evaluation of mechanical properties...
Abstract
This article aims to summarize the work on cryogenic strength and toughness and to present the fractography of aluminum alloys. It presents case studies on the importance of understanding the fractography of aluminum alloys and the role of microstructure in the appearance of fractographic features, with variables comprised of in-plane/through-thickness anisotropy, test temperature, heat treatment condition, and the effect of welding.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001023
EISBN: 978-1-62708-161-0
... ksi). At a yield strength level of 1655 MPa (240 ksi), K Ic values level off to about 66 MPa m (60 ksi in . ). Data are also plotted in Fig. 8 for wrought plates made of comparable steel of somewhat higher carbon content. Plain-strain fracture toughness at low temperatures...
Abstract
Steel castings can be made from any of the many types of carbon and alloy steel produced in wrought form. They are divided into four general groups according to composition. Carbon and low-alloy steel castings can meet a wide range of application requirements because composition and heat treatment can be selected to achieve specific combinations of properties, including hardness, strength, ductility, fatigue, and toughness. This article discusses physical, mechanical, and engineering properties as well as fatigue properties and the effects of section size and heat treatment. Highly stressed steel castings for aircraft and for high-pressure or high-temperature service must pass rigid nondestructive inspection.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002402
EISBN: 978-1-62708-193-1
... Abstract Cr-Mo steels are preferred in the construction of high-temperature components because they possess excellent strength, toughness, and corrosion resistance relative to carbon steels and most low-alloy steels. This article discusses the composition and metallurgy of the heat-resistant Cr...
Abstract
Cr-Mo steels are preferred in the construction of high-temperature components because they possess excellent strength, toughness, and corrosion resistance relative to carbon steels and most low-alloy steels. This article discusses the composition and metallurgy of the heat-resistant Cr-Mo steels. It details the Charpy V-notch (CVN) toughness properties of Cr-Mo steels relevant to fatigue and fracture resistance. The fracture mechanics of Cr-Mo steels are reviewed. The article analyzes the characterization of low-cycle fatigue based on fatigue damage calculations. It concludes with information on fatigue crack growth and fatigue behavior of weldments.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003101
EISBN: 978-1-62708-199-3
... structural steels capable of a minimum yield strength of 1380 MPa (200 ksi). These include medium-carbon low-alloy steels, such as 4340, 300M, D-6a and D-6ac steels; medium-alloy air-hardening steels, such as HI1 modified steel and H13 steel; high fracture toughness steels, such as HP-9-4-30, AF1410...
Abstract
Ultrahigh-strength steels are designed to be used in structural applications where very high loads are applied and often high strength-to-weight ratios are required. This article discusses the composition, mechanical properties, processing, product forms, and applications of commercial structural steels capable of a minimum yield strength of 1380 MPa (200 ksi). These include medium-carbon low-alloy steels, such as 4340, 300M, D-6a and D-6ac steels; medium-alloy air-hardening steels, such as HI1 modified steel and H13 steel; high fracture toughness steels, such as HP-9-4-30, AF1410, and AerMet 100 steels; and maraging steels.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006382
EISBN: 978-1-62708-192-4
... strength, ceramic materials are often used at elevated temperatures. However, low fracture toughness and low thermal conductivity render ceramic materials prone to thermal shock, caused by larger temperature difference (gradient) across an object, which may result in cracking. Thus, another important...
Abstract
Abrasive wear is a surface-damage process with material loss caused by hard asperities or abrasive particles occurring when two surfaces are sliding against each other. There are two types of abrasive wear: two-body abrasion and three-body abrasion. This article discusses the abrasive wear mechanism in ductile materials and commonly used testers for evaluating the resistance of materials to abrasive wear. The testers include pin-on-disk, block-on-ring, block-on-drum, and dry sand/rubber wheel abrasion tester. The article reviews the abrasion resistance of metallic materials, ceramic materials, and polymeric materials. It discusses factors that influence abrasive wear, including the environment, hardness, toughness, microstructure, and lubrication.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002406
EISBN: 978-1-62708-193-1
... in the nucleation and growth of the matrix precipitates which decreases the time to reach peak strength. This, along with low-temperature aging, minimizes the amount of grain boundary precipitates and PFZ's (which adversely affect fracture toughness) at the desired strength level. Alloy 2124 was the first 2XXX...
Abstract
This article provides an overview of fatigue and fracture resistance of aluminum alloys. It discusses the characteristics of aluminum alloy classes and the fracture mechanics of aluminum alloys. The article tabulates relative stress-corrosion cracking ratings for high-strength wrought aluminum products. It analyzes the selection of various alloys for stress-corrosion cracking resistance, including aluminum-lithium alloys, copper-free 7XXX alloys, and casting alloys. The article presents a list of typical tensile properties and fatigue limit of aluminum alloys. It also describes the effects of composition, microstructure, thermal treatments, and processing in fatigue crack growth of aluminum alloys.
Book Chapter
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002409
EISBN: 978-1-62708-193-1
... that provides optimum fracture toughness or resistance to crack growth. Improvements in K Ic can be obtained by providing either a microstructure of transformed beta or an equiaxed structure composed mainly of regrowth alpha that has both low dislocation densities and low concentrations of aluminum...
Abstract
This article summarizes the metallurgical and environmental variables that affect fracture toughness, fatigue life, and subcritical crack growth of titanium alloys, such as chemistry, microstructure, texture, environment, and loading. The classes of titanium alloys considered in the article include alpha-beta alloys, Ti-6AI-4V; alpha alloys, Ti-8Al -1Mo-IV, Ti-5AI-2.5Sn, Ti-6242S; and beta alloys, solute-lean beta alloys and solute-rich beta alloys.
1