Skip Nav Destination
Close Modal
By
William Cox, Wally Huijbregts, René Leferink
By
Paresh Haribhakti, P.B. Joshi
By
Russell D. Kane
By
Steven C. Kung
By
David A. Shifler
By
Robert B. Pond, Jr., David A. Shifler
By
Henry L. Bernstein, Ronald L. McAlpin
By
Tapio Mäntylä, Mikko Uusitalo
By
S.R. Collins, P.C. Williams, S.V. Marx, A. Heuer, F. Ernst ...
By
Barry C. Syrett, Otakar Jonas, Joyce M. Mancini
By
S.J. Matthews
Search Results for
low-temperature corrosion
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1939
Search Results for low-temperature corrosion
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Type II low-temperature hot corrosion, showing the layered appearance of th...
Available to PurchasePublished: 01 January 2006
Fig. 7 Type II low-temperature hot corrosion, showing the layered appearance of the scale. As-polished
More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001816
EISBN: 978-1-62708-180-1
... cause thinning and subsequent rupture. Overheating may or may not occur in tubes thinned by erosion or corrosion. Microstructural Features Prolonged overheating, usually at temperatures below Ac 1 (the temperature at which austenite begins to form) in carbon and low-alloy steels, causes...
Abstract
This article explains the main types and characteristic causes of failures in boilers and other equipment in stationary and marine power plants that use steam as the working fluid with examples. It focuses on the distinctive features of each type that enable the failure analyst to determine the cause and suggest corrective action. The causes of failures include tube rupture, corrosion or scaling, fatigue, erosion, and stress-corrosion cracking. The article also describes the procedures for conducting a failure analysis.
Book Chapter
Components Susceptible to Dew-Point Corrosion
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004159
EISBN: 978-1-62708-184-9
... is cooled below the saturation temperature pertinent to the concentration of condensable species contained by a gas. In the context of this article, it is the attack in the low-temperature section of combustion equipment resulting from acidic flue gas vapors that condense and cause corrosion damage...
Abstract
Dew-point corrosion occurs when gas is cooled below the saturation temperature pertinent to the concentration of condensable species contained by a gas. This article discusses dew-point corrosion problems in the susceptible areas of dry flue gas handling systems. The corrosion problems associated with the nitrate stress-corrosion cracking in heat-recovery steam generators are also discussed. The article presents general comments on the materials selection; plant operation; use of neutralizing additives; and maintenance, good housekeeping, and lagging (insulation). It concludes with information on guidance for maintaining specific sections of the plant.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003558
EISBN: 978-1-62708-180-1
... Grazing or high angle of incidence High or low temperature Corrosive or noncorrosive fluid Slurry erosion Grazing or high angle of incidence High or low temperature Corrosive or noncorrosive fluid Droplet erosion Grazing or high angle of incidence High or low temperature...
Abstract
This article focuses on the types of activities required for the resolution of wear problems. These include examining and characterizing the tribosystem; characterizing and modeling the wear process; obtaining and evaluating wear data; and evaluating and verifying the solution.
Book Chapter
Failure of Boilers and Related Equipment
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006825
EISBN: 978-1-62708-329-4
..., reheater, and economizer tubes). Boiler tubes, which constitute one of the main pressure parts in a boiler, are exposed to highly adverse conditions, such as high skin temperatures, corrosive and erosive environment on their outer surface, and high-pressure, high-temperature water and/or steam from...
Abstract
Failures in boilers and other equipment taking place in power plants that use steam as the working fluid are discussed in this article. The discussion is mainly concerned with failures in Rankine cycle systems that use fossil fuels as the primary heat source. The general procedure and techniques followed in failure investigation of boilers and related equipment are discussed. The article is framed with an objective to provide systematic information on various damage mechanisms leading to the failure of boiler tubes, headers, and drums, supplemented by representative case studies for a greater understanding of the respective damage mechanism.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004155
EISBN: 978-1-62708-184-9
... ). The corrosiveness of the steam turbine environments (on the surface, at temperature) is caused by one or more of the following: Concentration of impurities from low part per billion levels in steam to percent levels on turbine surfaces and the formation of concentrated aqueous solutions (concentration...
Abstract
The steam turbine is the simplest and most efficient engine for converting large amounts of heat energy into mechanical work. This article discusses the primary corrosion mechanisms such as corrosion fatigue, stress-corrosion cracking (SCC), pitting, corrosion, and erosion-corrosion, in steam turbines. It illustrates the various causes of the corrosiveness of the steam turbine environments through a Mollier diagram. The article describes the four parts of design disciplines that affect turbine corrosion, namely, mechanical design, heat transfer, flow and thermodynamics, and physical shape. It lists the ways to control the steam and surface chemistry, and design and material improvements to minimize turbine corrosion.
Book Chapter
Corrosion in Petroleum Refining and Petrochemical Operations
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004211
EISBN: 978-1-62708-184-9
... and nonferrous alloys used in petroleum refining and petrochemical applications. The article reviews the mechanical properties, fabricability, and corrosion resistance of refinery steels. It describes low- and high-temperature corrosion, hydrogen embrittlement, and cracking such as stress-corrosion, sulfide...
Abstract
This article presents the primary considerations and mechanisms for corrosion and explains how they are involved in the selection of materials for process equipment in refineries and petrochemical plants. It discusses the material selection criteria for a number of ferrous and nonferrous alloys used in petroleum refining and petrochemical applications. The article reviews the mechanical properties, fabricability, and corrosion resistance of refinery steels. It describes low- and high-temperature corrosion, hydrogen embrittlement, and cracking such as stress-corrosion, sulfide stress, and stress-oriented hydrogen-induced cracking. The article considers hydrogen attack, corrosion fatigue, and liquid metal embrittlement and the methods of combating them. It explains the causes of velocity-accelerated corrosion and erosion-corrosion. The article summarizes some corrective measures that can be implemented to control corrosion. The applicable standards for materials used in corrosive service conditions in upstream and downstream petroleum service are presented in a tabular form.
Book Chapter
Fireside Corrosion in Coal- and Oil-Fired Boilers
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004156
EISBN: 978-1-62708-184-9
... for waterwalls. From the corrosion data generated from these studies, a corrosion model was developed that can be used to estimate the corrosion rates of waterwall alloys (carbon and low-alloy steels) as a function of metal temperature, H 2 S concentration in the flue gas, and chromium content in the alloy ( Ref...
Abstract
The presence of certain impurities in coal and oil is responsible for the majority of fireside corrosion experienced in utility boilers. In coal, the primary impurities are sulfur, alkali metals, and chlorine. The most detrimental impurities in fuel oil are vanadium, sodium, sulfur, and chlorine. This article describes the two categories of fireside corrosion based on location in the furnace: waterwall corrosion in the lower furnace and fuel ash corrosion of superheaters and reheaters in the upper furnace. It discusses prevention methods, including changes to operating parameters and application of protective cladding or coatings.
Book Chapter
High-Temperature Corrosion in Military Systems
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004124
EISBN: 978-1-62708-184-9
... Corrosion Fireside corrosion Low-temperature Waterwall Coal ash Oil ash Lack of quality control Maintenance cleaning damage Chemical excursion damage Materials damage Welding defects Source: Ref 7 Stress Rupture Failures in Boiler Environments Stress and temperature...
Abstract
High-temperature exposure of materials occurs in many applications such as power plants (coal, oil, natural gas, and nuclear), land-based gas turbine and diesel engines, gas turbine engines for aircraft, marine gas turbine engines for shipboard use, waste incineration, high-temperature fuel cells, and missile components. This article discusses high-temperature corrosion in boilers, diesel engines, gas turbines, and waste incinerators. Boilers are affected by stress rupture failures, waterside corrosion failures, fireside corrosion failures, and environmental cracking failures. Contamination of combustion fuel in diesel engines can cause high-temperature corrosion. Gas turbine engines are affected by hot corrosion. Refractory-lined incinerators and alloy-lined incinerators are discussed. The article provides case studies for each component failure.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003806
EISBN: 978-1-62708-183-2
... containing varying amounts of many of the constituents mentioned previously. In energy conversion systems, contaminants in coal, oil, and natural gas result in the accelerated attack of low-alloy steels at elevated temperatures. In steam-generating electric power plants, corrosion due to impurities...
Abstract
Low-alloy steels are used in a broad spectrum of applications. In some cases, corrosion resistance is a major factor in alloy selection; in other applications, it is only a minor consideration. This article reviews the applications of alloy steel products in four major industries, namely, oil and gas production, energy conversion systems, marine applications, and chemical processing. Emphasis is placed on the corrosion characteristics of the products, which are used in various applications of each industry.
Book Chapter
High-Temperature Corrosion-Related Failures
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
... Metallurgical Services Fig. 9 Energy-dispersive spectroscopy corresponding to areas of Fig. 8 . Courtesy of Mohan Chaudhari, Columbus Metallurgical Services Little or no chlorides were detected in the corrosion debris, because these compounds have low melting and sublimation temperatures...
Abstract
High temperature corrosion may occur in numerous environments and is affected by factors such as temperature, alloy or protective coating composition, time, and gas composition. This article explains a number of potential degradation processes, namely, oxidation, carburization and metal dusting, sulfidation, hot corrosion, chloridation, hydrogen interactions, molten metals, molten salts, and aging reactions including sensitization, stress-corrosion cracking, and corrosion fatigue. It concludes with a discussion on various protective coatings, such as aluminide coatings, overlay coatings, thermal barrier coatings, and ceramic coatings.
Book Chapter
Corrosion of Industrial Gas Turbines
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004158
EISBN: 978-1-62708-184-9
... and martensitic, are used for lower-temperature static parts, fuel nozzles, and sometimes disks. Low-alloy steels are sometimes used for disks. While corrosion issues can occur for all of these materials and components, these issues are most often encountered with the blades and vanes. When the alloys do...
Abstract
The corrosion issues in the compressor, combustor and turbine sections of industrial gas turbines used in steam production generally depend on the quality of the fuel, air, and water used in the engine than on the specific industrial application. This article focuses on the forms of corrosion and their preventive measures in the compressor, combustor and turbine sections of a steam turbine. The compressor section mainly suffers from aqueous corrosion; while in case of the combustor and turbine sections, which are made of nickel-base superalloys, high-temperature environmental attack in the form of high-temperature oxidation and hot corrosion are predominant. The effect of high-temperature oxidation and hot corrosion on the mechanical properties of superalloys is also discussed.
Book Chapter
Corrosion of Cast Irons
Available to PurchaseSeries: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006349
EISBN: 978-1-62708-179-5
... Austenitic ductile iron castings for pressure-containing parts suitable for low-temperature service High-Chromium Cast Irons High-chromium cast irons are the fourth class of corrosion-resistant cast irons. These materials are basically white cast irons alloyed with 12 to 35% Cr. Other alloying...
Abstract
Cast irons provide excellent resistance to a wide range of corrosion environments when properly matched with that service environment. This article presents basic parameters to be considered before selecting cast irons for corrosion services. Alloying elements can play a dominant role in the susceptibility of cast irons to corrosion attack. The article discusses the various alloying elements, such as silicon, nickel, chromium, copper, and molybdenum, that enhance the corrosion resistance of cast irons. Cast irons exhibit the same general forms of corrosion as other metals and alloys. The article reviews the various forms of corrosions, such as graphitic corrosion, fretting corrosion, pitting and crevice corrosion, intergranular attack, erosion-corrosion, microbiologically induced corrosion, and stress-corrosion cracking. It discusses the four general categories of coatings used on cast irons to enhance corrosion resistance: metallic, organic, conversion, and enamel coatings.
Book Chapter
Corrosion of Thermal Spray Coatings at High Temperatures
Available to PurchaseBook: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0004050
EISBN: 978-1-62708-183-2
... Abstract This article describes the specific features and mechanisms of oxidation in thermal spray coatings. It discusses the two forms of hot corrosion in sulfur-containing combustion, namely high-temperature hot corrosion and low-temperature hot corrosion. The article reviews the behavior...
Abstract
This article describes the specific features and mechanisms of oxidation in thermal spray coatings. It discusses the two forms of hot corrosion in sulfur-containing combustion, namely high-temperature hot corrosion and low-temperature hot corrosion. The article reviews the behavior of corrosion-resistant coatings in boilers. The effects of high-temperature corrosion in waste incinerators are detailed. The article also examines the effects of erosion-corrosion in fluidized bed combustion boilers.
Book Chapter
Low-Temperature Carburization of Austenitic Stainless Steels
Available to PurchaseSeries: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005939
EISBN: 978-1-62708-168-9
... low-temperature carburization of austenitic stainless steels and other chromium-containing alloys. It describes the performance properties of the low-temperature carburized layer: fatigue resistance, wear resistance, erosion resistance, and corrosion resistance. austenitic stainless steel...
Abstract
Low-temperature carburization hardens the surface of austenitic stainless steels through the diffusion of interstitial carbon without the formation of carbides. This article provides an overview on austenitic stainless steels and low-temperature carburization. It reviews the competing technologies and commercial application of low-temperature carburization. The article discusses several processing parameters, including activation of the surface, proper surface preparation, selection and condition of the alloy to be carburized, treatment temperature, and carburizing atmosphere for successful low-temperature carburization of austenitic stainless steels and other chromium-containing alloys. It describes the performance properties of the low-temperature carburized layer: fatigue resistance, wear resistance, erosion resistance, and corrosion resistance.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004151
EISBN: 978-1-62708-184-9
... plant. Alloy 28 (UNS N08028), HR 160 (UNS N12160) When scale spallation due to chlorine migration to scale/metal interface occurs, corrosion rates increase considerably even at relatively low temperatures. Figure 10 shows the corrosion loss of the 310 stainless steel of Fig. 8 , as a function...
Abstract
This article focuses on high-temperature corrosion in synthetic gas (syngas) coolers. Extensive laboratory corrosion studies on both model and commercial alloys are summarized. The article describes the material selection criteria for long-term performance of materials in service. It provides information on the fuels with chlorine contents used in gasification plants.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003810
EISBN: 978-1-62708-183-2
... parts suitable for low-temperature service High-Chromium Cast Irons High-chromium cast irons are the fourth class of corrosion-resistant cast irons. These materials are basically white cast irons alloyed with 12 to 35% Cr. Other alloying elements may also be added to improve resistance...
Abstract
This article discusses the five basic matrix structures in cast irons: ferrite, pearlite, bainite, martensite, and austenite. The alloying elements, used to enhance the corrosion resistance of cast irons, including silicon, nickel, chromium, copper, molybdenum, vanadium, and titanium, are reviewed. The article provides information on classes of the cast irons based on corrosion resistance. It describes the various forms of corrosion in cast irons, including graphitic corrosion, fretting corrosion, pitting and crevice corrosion, intergranular attack, erosion-corrosion, microbiologically induced corrosion, and stress-corrosion cracking. The cast irons suitable for the common corrosive environments are also discussed. The article reviews the coatings used on cast irons to enhance corrosion resistance, such as metallic, organic, conversion, and enamel coatings. It explains the basic parameters to be considered before selecting the cast irons for corrosion services.
Book Chapter
Corrosion in the Condensate-Feedwater System
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004152
EISBN: 978-1-62708-184-9
... when trays are not properly aligned, spray nozzles plug or fail, or when the deaerator steam temperature or flow are low. Corrosion Problems and Solutions Stress-corrosion cracking (SCC) and corrosion fatigue (CF) of the deaerator storage tank and deaerating vessel welds is an industrywide...
Abstract
This article addresses the major heat-transfer components of the water-steam loop of a power plant. It describes the various types of condensers, including water-cooled condensers and air-cooled condensers. The article explains the corrosion mechanisms encountered in the condensers, including erosion-corrosion, galvanic corrosion, and pitting corrosion. It discusses the types of deaerators and deals with their corrosion problems. The article provides a discussion on two types of feedwater heaters: channel feedwater heaters and header feedwater heaters. It summarizes the corrosion problems associated with common feedwater heater tube materials.
Book Chapter
Selection of Cobalt-, Titanium-, Zirconium-, and Tantalum-Base Corrosion-Resistant Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001430
EISBN: 978-1-62708-173-3
... temperature. Unlike many bcc metals, tantalum retains good ductility to very low temperatures, and exhibits a ductile-to-brittle transition temperature (DBTT) of approximately −250 °C (−420 °F). Tantalum has excellent corrosion resistance to a wide variety of acids, alcohols, chlorides, sulfates...
Abstract
This article discusses the weldability characteristics of cobalt-base corrosion-resistant (CR) alloys, titanium-base CR alloys, zirconium-base CR alloys, and tantalum-base CR alloys that assist in the selection of suitable alloy and welding method for producing high-quality welds.
Book Chapter
Corrosion Resistance of Magnesium and Magnesium Alloys
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003139
EISBN: 978-1-62708-199-3
... at levels exceeding their solid solubility or up to a maximum of 5%. Four elements in Fig. 1 (cadmium, zinc, calcium, and silver) have mild-to-moderate accelerating effects on corrosion rates, whereas four others (iron, nickel, copper, and cobalt) have extremely deleterious effects because of their low...
Abstract
This article discusses the effects of heavy metal impurities, environmental factors, the surface condition (such as as-cast, treated, and painted), and the assembly practice on the corrosion resistance of a magnesium or a magnesium alloy part. It provides information on stress-corrosion cracking and galvanic corrosion of magnesium alloys, as well as the surface protection of magnesium assemblies achieved by inorganic surface treatments.
1