1-20 of 100 Search Results for

low-iron premium die-casting alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006573
EISBN: 978-1-62708-210-5
... Other (total), max 0.10 0.15 0.15 0.15 0.15 Al bal bal bal bal bal Alloy 365.0 was the first low-iron aluminum die-casting alloy that utilized manganese to reduce die soldering ( Ref 1 ). The required manganese range of 0.50–0.8 wt% reduces die soldering and changes the Fe-bearing...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006574
EISBN: 978-1-62708-210-5
... Abstract The aluminum alloys 367.0 and 368.0 are high-performance, low-iron, die-casting alloys that rely on strontium for die soldering resistance. In these alloys, the lower iron content minimizes the formation of needle-like, Al-Fe-Si phases that can deteriorate strength, elongation...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006572
EISBN: 978-1-62708-210-5
... Abstract Alloy 362.0, low-iron premium die-casting alloy, is made from recycled secondary metal scrap and was developed to have equivalent or better mechanical properties than Silafont-36 and/or Aural-2. This datasheet provides information on key alloy metallurgy, processing effects on physical...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006553
EISBN: 978-1-62708-210-5
... interest in structural applications. Developments in high-integrity die casting have resulted in low- iron, manganese-containing Al-Si-Mg alloys such as 365.0 and AlMg3Mn. Some typical uses include: Automotive space frames Automotive wheels Truck wheels Axle and differential housings ( Fig...
Book Chapter

Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005287
EISBN: 978-1-62708-187-0
... principles in casting. The article concludes with information on premium engineered castings that provide higher levels of quality and reliability than in conventionally produced castings. aluminum casting alloys centrifugal casting die casting lost foam casting gravity casting investment casting...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001061
EISBN: 978-1-62708-162-7
... Also note that Table 2 groups aluminum casting alloys into the following nine categories: Rotor alloys Commercial Duralumin alloys Premium casting alloys Piston and elevated-temperature alloys Standard, general-purpose alloys Die castings Magnesium alloys (see the earlier...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003127
EISBN: 978-1-62708-199-3
... holes in bosses for fastening or as passage for fluids. Casting Processes Aluminum alloy castings are routinely produced by pressure-die, permanent-mold, green- and dry-sand, investment, and plaster casting. Aluminum alloys are also readily cast with vacuum, low-pressure, centrifugal, and pattern...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006548
EISBN: 978-1-62708-210-5
... and/or permanent mold casting alloy levels, because a low iron level in such alloys fails to prevent the molten aluminum alloy from fully or partially soldering with a conventional die casting metal mold (generally constructed of H-13 tool steel). This problem has led to the development of new die casting alloys...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005331
EISBN: 978-1-62708-187-0
.... Today, aluminum alloy castings are produced in hundreds of compositions by all commercial casting processes, including green sand, dry sand, composite mold, plaster mold, investment casting, permanent mold, counter gravity low-pressure casting, and pressure die casting. Casting processes...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005187
EISBN: 978-1-62708-187-0
... Comparison of several casting methods Approximate and depending on the metal Parameter Green sand casting Permanent mold cast Die casting CO 2 -core casting Investment casting Relative cost in quantity Low Low Lowest Medium-high Highest Relative cost for small number Lowest High...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006524
EISBN: 978-1-62708-207-5
... casting, is also included. alloying elements aluminum casting alloys high-pressure die casting low-pressure permanent mold casting permanent mold casting green sand casting investment casting castability ALUMINUM CASTINGS have played an integral role in the growth of the aluminum...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003484
EISBN: 978-1-62708-195-5
... is placed in a permanent die mold, and complete infiltration by the molten metal matrix is accomplished by rapid pressurization. This squeeze casting process provides a high-quality component with low cost and very high production rates, as high as 100,000 per month ( Ref 3 ). The selectively reinforced...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006498
EISBN: 978-1-62708-207-5
... iron concentrations are detrimental to ductility. Alloys used for low-solid-fraction rheocasting often contain higher iron concentrations similar to die casting alloys (~1%), where the iron is added to minimize die soldering that may occur with the high-speed injection used with low-solid-fraction...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003175
EISBN: 978-1-62708-199-3
... casting are rarely used in pressure die casting. This is because the steel die material is soluble in molten aluminum. Therefore, iron is added to die casting alloys in amounts above 0.7%, which stops dissolution of the die in the alloy. Low-iron alloys solder to the die, and the castings cannot...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005974
EISBN: 978-1-62708-168-9
.... chemical composition continuous cooling transformation diagram cooling rate heat treatment impact toughness low-alloy hot-work steel microstructure tempering Introduction HOT-WORK OPERATIONS ARE USED in industrial processes of cutting, shaping, forming, or casting other materials, notably...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005306
EISBN: 978-1-62708-187-0
... of copper alloys, 10% Magnesium high-pressure die casting, 3% The articles in this Section, “Casting of Non-ferrous Alloys,” describe the shape casting of aluminum, copper, and zinc alloys along with articles on the continuous casting of aluminum and copper. Casting of magnesium alloys is detailed...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006457
EISBN: 978-1-62708-210-5
...-plastic fracture, namely R-curve concept, J-integral concept, and crack tip opening displacement method. The article considers the primary measures used to assess the toughness of aluminum alloy castings and wrought alloys: notch toughness, tear resistance, and plane-strain fracture toughness...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... cast iron low-alloy steel malleable irons pressure die casting semisolid casting squeeze casting FAILURES OF CASTINGS, like the failures of wrought materials, can occur from service conditions, improper design and/or materials selection, manufacturing deficiencies, or a combination...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003331
EISBN: 978-1-62708-176-4
... Calcia 6.0 3.3 Boron and aluminum nitrides 2 … Hardness of metals (Brinell scale) Table 4 Hardness of metals (Brinell scale) Material High Low White and alloy irons; cast 700 130 Osmium 670 300 Low-alloy steels, wrought; normalized, quenched and tempered 627 202...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005334
EISBN: 978-1-62708-187-0
... 0.25 … … 4.0 bal (a) Manganese content to be dependent on iron content. Although alloys used for the die-casting process are somewhat limited in number, more of the Al-Zn-Mn alloys (for example, the AZ91 type, particularly the high-purity grade) are now being used. A large, growing...