Skip Nav Destination
Close Modal
Search Results for
low-iron premium die-casting alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 100 Search Results for
low-iron premium die-casting alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006573
EISBN: 978-1-62708-210-5
... Other (total), max 0.10 0.15 0.15 0.15 0.15 Al bal bal bal bal bal Alloy 365.0 was the first low-iron aluminum die-casting alloy that utilized manganese to reduce die soldering ( Ref 1 ). The required manganese range of 0.50–0.8 wt% reduces die soldering and changes the Fe-bearing...
Abstract
Alloy 365.0 and A365.0 are developed near eutectic Al-Si die-casting alloys with additions of manganese to reduce die soldering. This datasheet provides information on key alloy metallurgy, processing effects on tensile properties, and fabrication characteristics of these 3xxx series alloys.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006574
EISBN: 978-1-62708-210-5
... Abstract The aluminum alloys 367.0 and 368.0 are high-performance, low-iron, die-casting alloys that rely on strontium for die soldering resistance. In these alloys, the lower iron content minimizes the formation of needle-like, Al-Fe-Si phases that can deteriorate strength, elongation...
Abstract
The aluminum alloys 367.0 and 368.0 are high-performance, low-iron, die-casting alloys that rely on strontium for die soldering resistance. In these alloys, the lower iron content minimizes the formation of needle-like, Al-Fe-Si phases that can deteriorate strength, elongation and fatigue behavior. This datasheet provides information on key alloy metallurgy, processing effects on tensile properties, and fabrication characteristics of these 3xxx series alloys.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006572
EISBN: 978-1-62708-210-5
... Abstract Alloy 362.0, low-iron premium die-casting alloy, is made from recycled secondary metal scrap and was developed to have equivalent or better mechanical properties than Silafont-36 and/or Aural-2. This datasheet provides information on key alloy metallurgy, processing effects on physical...
Abstract
Alloy 362.0, low-iron premium die-casting alloy, is made from recycled secondary metal scrap and was developed to have equivalent or better mechanical properties than Silafont-36 and/or Aural-2. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and applications of this alloy.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006553
EISBN: 978-1-62708-210-5
... interest in structural applications. Developments in high-integrity die casting have resulted in low- iron, manganese-containing Al-Si-Mg alloys such as 365.0 and AlMg3Mn. Some typical uses include: Automotive space frames Automotive wheels Truck wheels Axle and differential housings ( Fig...
Abstract
This article summarizes some general alloy groupings by application or major characteristics. The groupings include cast rotor, general-purpose, elevated-temperature, wear-resistant, moderate-strength, high-strength, and high-integrity die casting alloys and cast aluminum alloys bearings. A table lists selected applications for aluminum casting alloys.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005287
EISBN: 978-1-62708-187-0
... principles in casting. The article concludes with information on premium engineered castings that provide higher levels of quality and reliability than in conventionally produced castings. aluminum casting alloys centrifugal casting die casting lost foam casting gravity casting investment casting...
Abstract
Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. This article provides an overview of the common methods of aluminum shape casting. These include gravity casting, die casting, sand casting, lost foam casting, shell mold casting, plaster casting, investment casting, permanent mold casting, squeeze casting, semisolid forming, centrifugal casting, and pressure die casting. The article presents several different factors on which the selection of a casting process depends. It discusses gating and risering principles in casting. The article concludes with information on premium engineered castings that provide higher levels of quality and reliability than in conventionally produced castings.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001061
EISBN: 978-1-62708-162-7
... Also note that Table 2 groups aluminum casting alloys into the following nine categories: Rotor alloys Commercial Duralumin alloys Premium casting alloys Piston and elevated-temperature alloys Standard, general-purpose alloys Die castings Magnesium alloys (see the earlier...
Abstract
Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. This article discusses the designation and classification of aluminum casting alloys based on their composition and the factors influencing alloy selection. Alloys discussed include rotor alloys, commercial duralumin alloys, premium casting alloys, piston and elevated-temperature alloys, general-purpose alloys, magnesium alloys, aluminum-zinc-magnesium alloys, and bearing alloys. Six basic types of aluminum alloys developed for casting include aluminum-copper, aluminum-copper-silicon, aluminum-silicon, aluminum-magnesium, aluminum-zinc-magnesium, and aluminum-tin. The article also describes the main casting processes for aluminum alloys, which include die casting, permanent mold casting, sand casting (green sand and dry sand), plaster casting, and investment casting. In addition, the article discusses factors affecting the mechanical and physical properties, microstructural features that affect mechanical properties, the effects of alloying, and major applications of aluminum casting alloys.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003127
EISBN: 978-1-62708-199-3
... holes in bosses for fastening or as passage for fluids. Casting Processes Aluminum alloy castings are routinely produced by pressure-die, permanent-mold, green- and dry-sand, investment, and plaster casting. Aluminum alloys are also readily cast with vacuum, low-pressure, centrifugal, and pattern...
Abstract
Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. Aluminum alloy castings are routinely produced by pressure-die, permanent-mold, green and dry-sand, investment, and plaster casting. This article describes factors affecting the selection of casting process and the general designation system for aluminum alloys. It provides useful information on mechanical test methods, selection of proper test specimens for accurate test methods, characteristics of premium engineered castings, and advantages of hot isostatic pressing.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006548
EISBN: 978-1-62708-210-5
... and/or permanent mold casting alloy levels, because a low iron level in such alloys fails to prevent the molten aluminum alloy from fully or partially soldering with a conventional die casting metal mold (generally constructed of H-13 tool steel). This problem has led to the development of new die casting alloys...
Abstract
This article aims to comprehensively review and summarize the material properties and engineering data for aluminum alloy castings and their many applications. The discussion focuses on conventional sand, permanent mold, and die castings as well as the premium engineered versions of some alloys. The article provides a summary of aluminum casting alloy designations of The Aluminum Association, the Unified Numbering System, and specific alloys considered premium strength by definition and by ASTM International and Aerospace Material Specifications. A distillation of data from published industry sources is given for a wide range of the properties and performance characteristics for topics such as: physical and thermophysical properties, typical and minimum mechanical properties, fatigue resistance, fracture resistance, and subcritical crack growth.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005331
EISBN: 978-1-62708-187-0
.... Today, aluminum alloy castings are produced in hundreds of compositions by all commercial casting processes, including green sand, dry sand, composite mold, plaster mold, investment casting, permanent mold, counter gravity low-pressure casting, and pressure die casting. Casting processes...
Abstract
This article begins with a discussion on the effects of alloying and impurity elements on the properties of aluminum cast alloys and their chemical compositions. It describes the various means of structural control, namely, chemistry control, control of element ratios based on the stoichiometry of intermetallic phases, and control of solidification conditions. The article discusses the modification and grain refinement of aluminum-silicon alloys by the use of modifiers and refiners to influence eutectic and hypereutectic structures in aluminum-silicon alloys. It provides information on foundry alloys for specific casting applications. The article concludes with a discussion on the heat treatment practices and properties of aluminum casting alloys.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005187
EISBN: 978-1-62708-187-0
... Comparison of several casting methods Approximate and depending on the metal Parameter Green sand casting Permanent mold cast Die casting CO 2 -core casting Investment casting Relative cost in quantity Low Low Lowest Medium-high Highest Relative cost for small number Lowest High...
Abstract
This article discusses the categories and subcategories of shape casting processes. These include single-use processes such as sand, plaster, ceramic, and graphite molding; essentially unpressurized multiuse processes, such as permanent mold; and high-pressure metal mold methods, such as die casting, squeeze casting, and semisolid processing. The article contains tables that compare some of the typical capabilities of shape casting processes.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006524
EISBN: 978-1-62708-207-5
... casting, is also included. alloying elements aluminum casting alloys high-pressure die casting low-pressure permanent mold casting permanent mold casting green sand casting investment casting castability ALUMINUM CASTINGS have played an integral role in the growth of the aluminum...
Abstract
Aluminum casting alloys are among the most versatile of all common foundry alloys and generally have high castability ratings. This article provides an overview of the common methods of aluminum shape casting. It discusses the designations of aluminum casting alloys categorized by the Aluminum Association designation system. The article summarizes the basic composition groupings of aluminum casting alloy and discusses the effects of specific alloying elements and impurities. The characteristics of the important casting processes are summarized and compared in a table. The article presents the advantages and disadvantages of green sand casting, permanent mold casting, semipermanent mold casting, and high-pressure die casting. A discussion on other casting processes, such as investment casting, lost foam, plaster mold casting, pressure casting, centrifugal casting, and semisolid casting, is also included.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003484
EISBN: 978-1-62708-195-5
... is placed in a permanent die mold, and complete infiltration by the molten metal matrix is accomplished by rapid pressurization. This squeeze casting process provides a high-quality component with low cost and very high production rates, as high as 100,000 per month ( Ref 3 ). The selectively reinforced...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006498
EISBN: 978-1-62708-207-5
... iron concentrations are detrimental to ductility. Alloys used for low-solid-fraction rheocasting often contain higher iron concentrations similar to die casting alloys (~1%), where the iron is added to minimize die soldering that may occur with the high-speed injection used with low-solid-fraction...
Abstract
Semisolid casting is a near-net shape manufacturing process capable of producing thick- and thin-walled complex-shaped components having excellent mechanical and functional performance. This article begins with a discussion on the history of semisolid processing and the advantages claimed for semisolid casting. It describes the four notable processes used to produce semisolid castings: thixocasting, rheocasting, thixomolding, and wrought processes. Most commercial aluminum semisolid casters use either thixocasting or rheocasting. The article discusses the die design, process conditions, and simulation for semisolid casting. It concludes with a review of several components produced by each of the various semisolid casting processes.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003175
EISBN: 978-1-62708-199-3
... casting are rarely used in pressure die casting. This is because the steel die material is soluble in molten aluminum. Therefore, iron is added to die casting alloys in amounts above 0.7%, which stops dissolution of the die in the alloy. Low-iron alloys solder to the die, and the castings cannot...
Abstract
Aluminum alloys are primarily used for nonferrous castings because of their light weight and corrosion resistance. This article discusses at length the melting and metal treatment, structure control, sand casting, permanent mold casting, and die casting of aluminum alloys. It also covers the types and melting and casting practices of copper alloys, zinc alloys, magnesium alloys, titanium alloys, and superalloys, and provides a brief account on the casting technique of metal-matrix composites.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005974
EISBN: 978-1-62708-168-9
.... chemical composition continuous cooling transformation diagram cooling rate heat treatment impact toughness low-alloy hot-work steel microstructure tempering Introduction HOT-WORK OPERATIONS ARE USED in industrial processes of cutting, shaping, forming, or casting other materials, notably...
Abstract
This article focuses on heat treating of the most important H-series and low-alloy hot-work tool steels, namely, normalizing, annealing, stress relieving, preheating, austenitizing, quenching, tempering, and surface hardening. It describes the heat-treating procedure for hot-work tools using examples. The article provides information on the North American Die-Casting Association's requirements for steel grades and heat treatment of dies made of hot-work tool steels. It also describes the chemical compositions and mechanical and metallurgical properties of hot-work tool steels.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005306
EISBN: 978-1-62708-187-0
... of copper alloys, 10% Magnesium high-pressure die casting, 3% The articles in this Section, “Casting of Non-ferrous Alloys,” describe the shape casting of aluminum, copper, and zinc alloys along with articles on the continuous casting of aluminum and copper. Casting of magnesium alloys is detailed...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006457
EISBN: 978-1-62708-210-5
...-plastic fracture, namely R-curve concept, J-integral concept, and crack tip opening displacement method. The article considers the primary measures used to assess the toughness of aluminum alloy castings and wrought alloys: notch toughness, tear resistance, and plane-strain fracture toughness...
Abstract
This article discusses the concepts underlying linear elastic fracture mechanics and elastic-plastic fracture mechanics as well as their importance in characterizing the fracture behavior of the high-strength aluminum alloys. It describes the three methods used for analyzing elastic-plastic fracture, namely R-curve concept, J-integral concept, and crack tip opening displacement method. The article considers the primary measures used to assess the toughness of aluminum alloy castings and wrought alloys: notch toughness, tear resistance, and plane-strain fracture toughness.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... cast iron low-alloy steel malleable irons pressure die casting semisolid casting squeeze casting FAILURES OF CASTINGS, like the failures of wrought materials, can occur from service conditions, improper design and/or materials selection, manufacturing deficiencies, or a combination...
Abstract
This article focuses on the general root causes of failure attributed to the casting process, casting material, and design with examples. The casting processes discussed include gravity die casting, pressure die casting, semisolid casting, squeeze casting, and centrifugal casting. Cast iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand molds. It presents the international classification of common casting defects in a tabular form.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003331
EISBN: 978-1-62708-176-4
... Calcia 6.0 3.3 Boron and aluminum nitrides 2 … Hardness of metals (Brinell scale) Table 4 Hardness of metals (Brinell scale) Material High Low White and alloy irons; cast 700 130 Osmium 670 300 Low-alloy steels, wrought; normalized, quenched and tempered 627 202...
Abstract
This article is a comprehensive collection of tables that list the values for hardness of plastics, rubber, elastomers, and metals. The tables also list the tensile yield strength and tensile modulus of metals and plastics at room temperature. A comparison of various engineering materials, on the basis of tensile strength, is also provided.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005334
EISBN: 978-1-62708-187-0
... 0.25 … … 4.0 bal (a) Manganese content to be dependent on iron content. Although alloys used for the die-casting process are somewhat limited in number, more of the Al-Zn-Mn alloys (for example, the AZ91 type, particularly the high-purity grade) are now being used. A large, growing...
Abstract
This article focuses on the variety of alloys, furnaces, and associated melting equipment as well as the casting methods available for manufacturing magnesium castings. These methods include sand casting, permanent mold casting, die casting, thixomolding, and direct chill casting. The article discusses the flux process and fluxless process for the melting and pouring of magnesium alloys. It describes the advantages and disadvantages of green sand molding and tabulates typical compositions and properties of magnesium molding sands. The article provides information on the machining characteristics of magnesium and the applications of magnesium alloys.
1