1-20 of 1229 Search Results for

low-expansion alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003159
EISBN: 978-1-62708-199-3
... Abstract Low-expansion alloys are materials with dimensions that do not change appreciably with temperature. Alloys included in this category are various binary iron-nickel alloys and several ternary alloys of iron combined with nickel-chromium, nickel-cobalt, or cobalt-chromium alloying. Low...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001099
EISBN: 978-1-62708-162-7
... Abstract Low-expansion alloys are characterized by their dimensional stability, suiting them for applications such as geodetic tape, bimetal strip, glass-to-metal seals, and electronic components. This article describes the composition of such alloys along with related properties and behaviors...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001072
EISBN: 978-1-62708-162-7
... on the commercial forms of nickel alloys, namely, nickel-copper alloys, nickel-chromium and nickel-chromium-iron series, iron-nickel-chromium alloys, controlled-expansion alloys, nickel-iron low-expansion alloys, soft magnetic alloys, and welding alloys. corrosion resistance mechanical properties nickel...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006261
EISBN: 978-1-62708-169-6
..., special-purpose alloys such as nitinol shape memory alloys, low-expansion alloys, electrical-resistance alloys and soft magnetic alloys. Finally, the article focuses on heat treatment modeling for selecting the appropriate heat treatment process. aging annealing corrosion-resistant nickel alloys...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003148
EISBN: 978-1-62708-199-3
..., cemented carbides, magnetic materials, low-expansion alloys, and high-speed tool steels. cobalt cobalt alloys corrosion-resistant alloys high-temperature alloys mechanical properties mining special-purpose alloys superalloys uses of cobalt wear-resistant alloys COBALT is a tough silvery...
Image
Published: 01 January 1990
Fig. 58 Coefficients of thermal expansion for carbon and low-alloy steels at various temperatures. These are not mean values of the coefficient over a range of temperatures. More
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003161
EISBN: 978-1-62708-199-3
... Abstract Fusible alloys, eutectic and noneutectic, include a group of binary, ternary, quaternary, and quinary alloys containing bismuth, lead, tin, cadmium, and indium that melt at relatively low temperatures. This article describes the composition and mechanical properties of these alloys...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006553
EISBN: 978-1-62708-210-5
... temperatures. The retention of these properties as temperature increases is an advantage in many applications. Cast aluminum alloy pistons featuring low specific gravity, low thermal expansion, elevated-temperature strength, wear resistance, and high thermal conductivity are the international standard...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005443
EISBN: 978-1-62708-196-2
... Abstract This article presents a table that lists the linear thermal expansion of selected metals and alloys. These include aluminum, copper, iron, lead, magnesium, nickel, tin, titanium, and zinc and their alloys. Thermal expansion is presented for specific temperature ranges. linear...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006565
EISBN: 978-1-62708-210-5
... Abstract The aluminum alloy 336.0 is a high-silicon alloy suitable for applications where good high-temperature strength, low coefficient of thermal expansion, and good resistance to wear are required. This datasheet provides information on key alloy metallurgy, processing effects on physical...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002452
EISBN: 978-1-62708-194-8
... Tungsten (W) alloys Zinc (Zn) alloys Beryllium (Be) Boron (B) Germanium (Ge) Silicon (Si) Engineering plastics (thermoplastics and thermosets) Epoxies (EP) Melamines (MEL) Polycarbonate (PC) Polyesters (PEST) High-density polyethylene (HDPE) Low-density polyethylene...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006692
EISBN: 978-1-62708-210-5
... Abstract Wrought 4xxx alloys (extrusions and forgings) exhibit high surface hardness, wear resistance, and a low coefficient of thermal expansion. This article provides a summary of brazing filler metals used to join brazeable aluminum-base metals. It contains tables that list the nominal...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006674
EISBN: 978-1-62708-213-6
... of Switzerland, the Nobel Prize in Physics in 1920. Invar has been modified with other alloying elements, such as cobalt, to reduce its CTE even further. Fused silica, also known as fused quartz or quartz glass, has a low-density structure that accommodates thermal expansion internally, thus giving...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005979
EISBN: 978-1-62708-168-9
... by Boyer ( Ref 4 ). As Table 6 illustrates, martempering resulted in a smaller amount of outside-diameter expansion, out-of-roundness, and bowing. Comparison of martempering with direct quenching of high-carbon low-alloy tubes Table 6 Comparison of martempering with direct quenching of high-carbon...
Book Chapter

By J.F. Libsch
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001387
EISBN: 978-1-62708-173-3
... to be brazed by induction heating require special attention: Heating pattern Method of preplacing the joining alloy Clearances between mating parts Thermal conductivity and expansion characteristics of the materials to be joined Effect of Thermal Expansion on Stress Effect of Thermal...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001349
EISBN: 978-1-62708-173-3
... of the large differences in thermal expansion. Low-expansion materials such as refractory metals, ceramics, and low-expansion iron-nickel and iron-nickel-cobalt alloys may fail or be highly stressed during cooling when welded to high-expansion material such as austenitic stainless steels and nickel-base...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001010
EISBN: 978-1-62708-161-0
... Abstract This article discusses the following physical properties of AISI and SAE grades of carbon and low-alloy steels: coefficients of linear thermal expansion; thermal conductivity; specific heat; and electrical resistivity. AISI grade steel carbon steels low-alloy steels physical...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0006002
EISBN: 978-1-62708-168-9
... Abstract This article is a comprehensive collection of tables that present information on the various thermal properties, namely, the coefficient of linear thermal expansion, thermal conductivity, and specific heat, of carbon and low-alloy steels. alloy steel carbon steel coefficient...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003358
EISBN: 978-1-62708-195-5
... and most mature at this time. The benefits of using SiC as reinforcement are improved stiffness, strength, thermal conductivity, wear resistance, fatigue resistance, and reduced thermal expansion. Additionally, SiC reinforcements are typically low- cost and are relatively low-density. Figure 1 shows...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006739
EISBN: 978-1-62708-210-5
... Alloy 7085 ( Table 1 ) developed by Arconic is a high-strength 7 xxx alloy with low quench sensitivity enabling high strength with increasing product thickness ( Ref 2 and 3 ). Alloy 7085 is available as thick plate and die and hand forgings. Arconic alloy 7085-T7451 plate is covered by AMS 4470...