Skip Nav Destination
Close Modal
Search Results for
low-energy ion-scattering spectroscopy
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 158 Search Results for
low-energy ion-scattering spectroscopy
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006628
EISBN: 978-1-62708-213-6
... Abstract This article is a brief account of low-energy ion-scattering spectroscopy (LEIS) for determining the atomic structure of solid surfaces. It begins with a description of the general principles of LEIS. This is followed by a section providing information on the equipment used for LEIS...
Abstract
This article is a brief account of low-energy ion-scattering spectroscopy (LEIS) for determining the atomic structure of solid surfaces. It begins with a description of the general principles of LEIS. This is followed by a section providing information on the equipment used for LEIS. Various steps involved in the sample preparation, calibration, and data analysis are then discussed. The article concludes with a section on the applications and interpretation of LEIS in material analysis, including discussion on surface structural analysis, layer-by-layer (Frank-van der Merwe) growth, and low-energy atom-scattering spectroscopy.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001773
EISBN: 978-1-62708-178-8
... Abstract Low-energy ion-scattering spectroscopy (LEISS) is used extensively to analyze solid surfaces. The LEISS process relies on binary elastic collisions between an incident ion beam and the atoms in a sample to obtain information on the surface atoms. The velocity of the scattered ions...
Abstract
Low-energy ion-scattering spectroscopy (LEISS) is used extensively to analyze solid surfaces. The LEISS process relies on binary elastic collisions between an incident ion beam and the atoms in a sample to obtain information on the surface atoms. The velocity of the scattered ions is used to determine the mass of the atoms that are struck. This article introduces LEISS and its principles. It describes the use of LEISS spectra in qualitative and quantitative analyses, and reviews the instrumentation and applications of LEISS.
Image
Published: 15 December 2019
Fig. 9 Schematic view of low-energy ion-scattering spectroscopy combined with an ultrahigh vacuum chamber. AES, Auger electron spectroscopy; LEED, low-energy electron diffraction; MCP, microchannel plate; TDC, time-to-digital converter; TMP, turbo molecular pump
More
Image
Published: 15 December 2019
: liquid chromatography/mass spectrometry; LEISS: low-energy ion-scattering spectroscopy; MFS: molecular fluorescence spectroscopy; NAA: neutron activation analysis; NMR: nuclear magnetic resonance; OM: optical metallography; RS: Raman spectroscopy; SAXS: small-angle x-ray scattering; SEM: scanning
More
Image
Published: 15 December 2019
; SEM: scanning electron microscopy; AFM: atomic force microscopy; EPMA: electron probe microanalysis; SAXS: x-ray solution scattering; AES: Auger electron spectroscopy; SIMS: secondary ion mass spectroscopy; LEISS: low-energy ion scattering spectroscopy
More
Image
Published: 15 December 2019
-AES, inductively coupled plasma atomic emission spectroscopy; IR, infrared spectroscopy; LEISS, low-energy ion-scattering spectroscopy; NAA, neutron activation analysis; OES, optical emission spectroscopy; OM, optical metallography; RBS, Rutherford backscattering spectrometry; RS, Raman spectroscopy
More
Image
in Introduction to Characterization of Organic Solids and Organic Liquids
> Materials Characterization
Published: 15 December 2019
: low-energy ion-scattering spectroscopy; MFS: molecular fluorescence spectroscopy; NAA: neutron activation analysis; NMR: nuclear magnetic resonance; OM: optical metallography; RS: Raman spectroscopy; SAXS: small-angle x-ray scattering; SEM: scanning electron microscopy; SIMS: secondary ion mass
More
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0005693
EISBN: 978-1-62708-178-8
... inductively coupled plasma atomic emission spectroscopy ICP-MS inductively coupled plasma mass spectrometry IR infrared (spectroscopy) IRRAS infrared reflection absorption spectroscopy LEED low-energy electron diffraction LEISS low-energy ion-scattering spectroscopy...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006652
EISBN: 978-1-62708-213-6
... chromatography; ICP-MS, inductively coupled plasma mass spectroscopy; LC, liquid chromatography; LC/MS: liquid chromatography/mass spectrometry; LEISS, low-energy ion-scattering spectroscopy; MFS, molecular fluorescence spectroscopy; NAA, neutron activation analysis; NMR, nuclear magnetic resonance; OM, optical...
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006678
EISBN: 978-1-62708-213-6
... • … … • • • • • • • • • • … … Ion chromatography D,N … D,N D,N D,N D,N D,N D,N … N D,N D,N D,N … … Liquid chromatography … … D … D D D D … … D D D … … Liquid chromatography mass spectrometry D, • D,N D,• D,• D D D D … … D D D … … Low-energy ion-scattering spectroscopy...
Abstract
This article briefly discusses popular techniques for metals characterization. It begins with a description of the most common techniques for determining chemical composition of metals, namely X-ray fluorescence, optical emission spectroscopy, inductively coupled plasma optical emission spectroscopy, high-temperature combustion, and inert gas fusion. This is followed by a section on techniques for determining the atomic structure of crystals, namely X-ray diffraction, neutron diffraction, and electron diffraction. Types of electron microscopies most commonly used for microstructural analysis of metals, such as scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy, are then reviewed. The article contains tables listing analytical methods used for characterization of metals and alloys and surface analysis techniques. It ends by discussing the objective of metallography.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006126
EISBN: 978-1-62708-175-7
.... The techniques used for performing microanalysis include scanning electron microscopy and electron probe X-ray microanalysis. The article describes surface analysis techniques, including Auger electron spectroscopy, X-ray photoelectron spectroscopy, and ion-scattering spectroscopy. Bulk analysis techniques...
Abstract
This article discusses the capabilities and limitations of various material characterization methods that assist in the selection of a proper analytical tool for analyzing particulate materials. Commonly used methods are microanalysis, surface analysis, and bulk analysis. The techniques used for performing microanalysis include scanning electron microscopy and electron probe X-ray microanalysis. The article describes surface analysis techniques, including Auger electron spectroscopy, X-ray photoelectron spectroscopy, and ion-scattering spectroscopy. Bulk analysis techniques, such as X-ray powder diffraction, inductively coupled plasma atomic emission spectroscopy, atomic absorption spectroscopy, and atomic fluorescence spectrometry, are also discussed.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006671
EISBN: 978-1-62708-213-6
..., electron probe x-ray microanalysis; FTIR, Fourier transform infrared spectroscopy; IA, image analysis; IC, ion chromatography; ICP-AES, inductively coupled plasma atomic emission spectroscopy; IR, infrared spectroscopy; LEISS, low-energy ion-scattering spectroscopy; NAA, neutron activation analysis; OES...
Abstract
The characterization, testing, and nondestructive evaluation of ceramics and glasses are vital to manufacturing control, property improvement, failure prevention, and quality assurance. This article provides a broad overview of characterization methods and their relationship to property control, both in the production and use of ceramics and glasses. Important aspects covered include the means for characterizing ceramics and glasses, the corresponding rationale behind them, and relationship of chemistry, phases, and microconstituents to engineering properties. The article also describes the effects that the structure of raw ceramic materials and green products and processing parameters have on the ultimate structure and properties of the processed piece. The effects that trace chemistry and processing parameters have on glass properties are discussed. The article describes mechanical tests and failure analysis techniques used for ceramics.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001301
EISBN: 978-1-62708-170-2
..., there are several possibilities for surface chemical analysis: the characteristic energy loss of scattered primary ions (ISS, RBS), the mass of secondary (sputtered) particles (SIMS, SNMS, GDMS), or their optical emission (GDOES). Primary ion energy spectroscopy is performed either at low energy (<10 keV) ( Ref...
Abstract
Coatings and thin films can be studied with surface analysis methods because their inherently small depth allows characterization of the surface composition, interface composition, and in-depth distribution of composition. This article describes principles and examples of common surface analysis methods, namely, Auger electron spectroscopy, X-ray photoelectron spectroscopy, ion scattering spectroscopy, secondary ion mass spectroscopy, and Rutherford backscattering spectroscopy. It also provides useful information on the applications of surface analysis.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006748
EISBN: 978-1-62708-213-6
... perpendicular planes as peaks in the energy spectra of the secondary arriving at different foci. electrons generated. backscattered ion. An ion that has entered a Auger electron spectroscopy (AES). A tech- sample and, through one or more collisions, atom. The smallest particle of an element that nique...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006657
EISBN: 978-1-62708-213-6
... mass spectroscopy, and low-energy ion-scattering spectroscopy, discussed in articles in this Volume, are among the most widely used surface-sensitive analytical techniques capable of providing elemental composition of the outermost atomic layers of a solid. These techniques are used to investigate...
Abstract
This article discusses the basic principles of and chemical effects in Auger electron spectroscopy (AES), covering various factors affecting the quantitative analyses of AES. The discussion covers instrumentation and sophisticated electronics typically used in AES for data acquisition and manipulation and various limitations of AES. Various examples highlighting the capabilities of the technique are also included.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003710
EISBN: 978-1-62708-182-5
... bonding, and elemental depth profile Ion scattering spectroscopy (ISS) The energy of scattered primary ions from the surface allows identification of surface atoms. Chemical composition of the surface films at atomic and a molecular level Secondary ion mass spectrometry (SIMS) Incident ion beam...
Abstract
This article describes the analytical methods for analyzing surfaces for corrosion and corrosion inhibition processes as well as failure analysis based on surface structure and chemical identity and composition. The principles and applications of the surface-structure analysis techniques, namely, optical microscopy, scanning electron microscopy, scanning tunneling microscopy, and atomic force microscopy, are reviewed. The article discusses the principles and applications of chemical identity and composition analysis techniques. These techniques include the energy dispersive X-ray spectroscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy, ion scattering spectroscopy, reflectance Fourier transform infrared absorption spectroscopy, Raman and surface enhanced Raman spectroscopy, and extended X-ray absorption fine structure analysis.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001775
EISBN: 978-1-62708-178-8
... crystal Low-energy ion-scattering spectroscopy: Low-energy Lattice strain measurement of heteroepitaxy layers Rutherford backscattering spectrometry using keV or superlattices ions rather than typical Rutherford backscattering spectrometry, which uses MeV ions Samples Cross-section transmission...
Abstract
Rutherford backscattering spectrometry (RBS) is a major materials characterization technique that can provide information in a short analysis time. It is used for quantitative compositional analysis of thin films, layered structures, or bulk materials and to measure surface impurities of heavy elements on substrates of lighter elements. This article focuses on RBS and its principles, such as collision kinematics, scattering cross section, and energy loss. It describes the channeling effect and the operation of the RBS equipment. The article also provides information on the applications of RBS.
Book Chapter
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0005692
EISBN: 978-1-62708-178-8
... of a field ion element due to a change in chemical with a small energy loss. The back- microscope with a hole in its screen open- bonding relative to a specified element or scattered electron yield is strongly de- ing into a mass spectrometer; atoms are compound. pendent upon atomic number, qualita- removed...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005685
EISBN: 978-1-62708-198-6
.... These methods include light microscopy, scanning electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. atomic force...
Abstract
This article focuses on the modes of operation, physical basis, sample requirements, properties characterized, advantages, and limitations of the characterization methods used to evaluate the physical morphology and chemical properties of component surfaces for medical devices. These methods include light microscopy, scanning electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006675
EISBN: 978-1-62708-213-6
... that have not been included in this division include: Glow discharge optical emission spectroscopy, a surface-sensitive technique (covered in Division 2, “Spectroscopy,” in this Volume) Electron energy loss spectroscopy (covered in Division 9, “Microscopy and Microanalysis,” in this Volume) Ion...
Abstract
This article is an overview of the division Surface Analysis of this volume. The division covers various developed surface-analysis techniques, such as scanning probe and atomic force microscopy. The division focuses on the analysis of surface layers that are less than 100 nm. A quick reference summary of surface-analysis methods is presented in this article.
1