Skip Nav Destination
Close Modal
Search Results for
low-density high-strength extrusion alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 518 Search Results for
low-density high-strength extrusion alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006604
EISBN: 978-1-62708-210-5
... and 7xxx extrusions. aluminum alloy 2055 aluminum-copper-lithium alloys damage tolerance extrusions floor beams fuselage stringers low-density high-strength extrusion alloys Alloy 2055 is another Al-Cu-Li alloy ( Table 1 ) developed as a replacement for high-strength 7 xxx and 2 xxx...
Abstract
Alloy 2055 is an Al-Cu-Li alloy developed as a replacement for high-strength 7xxx and 2xxx alloys in applications such as fuselage stringers and floor beams. This datasheet provides information on its key alloy metallurgy and illustrates the damage tolerance of 2055-T84 extrusions and 7xxx extrusions.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006095
EISBN: 978-1-62708-175-7
... fabricated using ADMA's TiH 2 powder, blended with master alloy powders then CIP and vacuum sintered, followed by canless extrusion ( Ref 2 ). Chemical analysis reported chloride content <100 ppm, and in the as-sintered billets very low values were measured (chloride <0.0010 wt%) ( Ref 2...
Abstract
This article focuses on mechanical testing characterization of blended elemental powder metallurgy (PM) titanium alloys and prealloyed PM titanium alloys. It examines the tensile properties, fracture toughness, stress-corrosion threshold resistance, fatigue strength, crack propagation properties, and processing-microstructure-property relationships of these alloys. The article also reviews five considerations for powder process selection.
Book Chapter
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006085
EISBN: 978-1-62708-175-7
.... The combination of low density (1.85 g/cm 3 ) with a high modulus of elasticity and an elongation in excess of 10% in the longitudinal (extrusion) direction make this an ideal structural material for this application. Ferrous Alloys Although powder extrusion is intrinsically an expensive process, benefits...
Abstract
This article focuses on direct extrusion processing where metal powders undergo plastic deformation, usually at an elevated temperature, to produce a densified and elongated form having structural integrity. It provides information on the basic powder extrusion processes and the mechanics of extrusion. The article also examines specific extrusion practices for the production of wrought material from powder stock and provides examples of materials processed by powder extrusion.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003375
EISBN: 978-1-62708-195-5
...; electromagnetic shielding properties; smooth, thinnest cell walls; machinable; relatively low cost Steel: Strong, good heat transfer properties, electromagnetic shielding properties, heat resistance Specialty metals: Relatively high strength-to- weight ratio, good heat transfer properties, chemical...
Abstract
Lightweight structural cores are used on aircrafts to reduce weight and increase payload and fight distance. This article discusses the classification of lightweight structural cores, namely, honeycomb, balsa, and foam. It reviews the four primary manufacturing methods used to produce honeycomb: adhesive bonding and expansion, corrugation and adhesive bonding, corrugation and braze welding, and extrusion. The article describes cell configuration and properties of honeycomb. It discusses the factors influencing specification of structural cores, including materials, size, density, mechanical properties, environmental compatibility, formability, durability, and thermal behavior. The article provides information on the benefits and concepts of a sandwich panel containing lightweight structural cores.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006142
EISBN: 978-1-62708-175-7
... will render a high strength, full density PM material, such as a tool steel and a dispersion strengthened alloy, table for its intended use. This is in contrast to the lower density, conventional PM materials where such defects are tolerable because the influence of these defects on the strength and ductility...
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006058
EISBN: 978-1-62708-175-7
... ), in structural and optical components of the Spitzer Telescope, and in its aluminum-alloyed form in the Mars Space Rovers, Spirit and Opportunity. Its high microyield strength and low density make it ideal for use in inertial guidance components requiring dimensional stability. The combination of low density...
Abstract
This article briefly describes the production of beryllium powder and beryllium/beryllium oxide metal-matrix powder. It discusses fully dense consolidation methods: vacuum hot pressing, hot isostatic pressing, and cold isostatic pressing. Secondary fabrication operations of beryllium and aluminum-beryllium alloys such as extrusion, rolling, welding, joining, and machining are discussed. The article discusses quality control and provides information on the structural, optical, and high-purity grades of beryllium.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006746
EISBN: 978-1-62708-210-5
.... aluminum alloy 7449 aluminum alloy plates corrosion properties extrusion alloys high-strength plate alloys stress-corrosion cracking resistance toughness Alloy 7449 ( Table 1 ), was developed by Pechiney and introduced in the same year as alloy 7349 to provide higher strength properties than...
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003129
EISBN: 978-1-62708-199-3
... Percent of room-temperature strength retained after elevated-temperature exposure of Al-Fe-Ce alloys Low Density/High-Stiffness Alloys Low density/high-stiffness alloys include alloying elements that increase the elastic modulus or decrease density. Lithium and beryllium are the only elements...
Abstract
This article provides an overview of the composition and properties of powder metallurgy (P/M) aluminum powders for pressed and sintered parts. It includes the steps involved in the processing of high-performance P/M alloys. The article describes the classes of high-performance P/M alloys, including corrosion-resistant alloys (stress-corrosion cracking), elevated-temperature alloys, and low density/high-stiffness alloys.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006516
EISBN: 978-1-62708-210-5
... composition (1.5% Fe, 0.65% Mn). The resultant microstructure contains a very high particle density, which stabilizes a fine grain size and leads to high strength. Usually produced by DC casting, alloy 8006 was originally developed for automotive sheet applications but found immediate applications as high...
Abstract
The development of aluminum alloys has progressed along two tracks: heat treatable and non-heat treatable. The Aluminum Association alloy composition limits and product temper are defined for major alloying elements. This article summarizes the historical evolution of the different series of wrought aluminum alloys (1xxx to 8xxx) and discusses their applications based on the alloying system introduced by the Aluminum Association.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003674
EISBN: 978-1-62708-182-5
... series of alloys can be divided into two groups: low magnesium (under 3%) and high magnesium (3 to 6%). The low-magnesium alloys have very good corrosion resistance in a broad range of environments. The high-magnesium alloys have greater strength than the low-magnesium alloys, and they have outstanding...
Abstract
This article addresses the general effects of the composition, mechanical treatment, surface treatment, and processing on the corrosion resistance of aluminum and aluminum alloys. There are five major alloying elements: copper, manganese, silicon, magnesium, and zinc, which significantly influence the properties of aluminum alloys. There are organic coatings or paints that provide a barrier between a corrosive environment and aluminum surface. Inorganic coatings, including claddings, and enhanced oxides, such as anodized films, Boehmite films, and conversion coatings also help in corrosion prevention. The article assists in the information on selection of fabrication operations, as they play an important role in corrosion resistance.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003138
EISBN: 978-1-62708-199-3
... employed in a wide variety of structural applications because of their favorable combination of tensile strength 160 to 365 MPa, or 23 to 53 ksi), elastic modulus (45 GPa, or 6.5 × 10 6 psi), and low density (1.74 g/cm 3 , which is two-thirds that of aluminum). Magnesium alloys have high strength...
Abstract
Magnesium and magnesium alloys have been employed in a wide variety of structural applications because of their favorable combination of tensile strength, elastic modulus, and low density. Providing a brief section on occurrence, production, and uses of magnesium, this article describes alloy and temper designations of cast and wrought magnesium alloys. The role of mechanical properties and fabrication characteristics in selection of product forms for structural applications is covered. The article explores the use of magnesium alloys as a substitution for heavier metals such as steel and aluminum alloys to reduce weight in structural parts.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006728
EISBN: 978-1-62708-210-5
... Abstract The extrusion alloy 7005 is used as extruded structural members, where welded or brazed assemblies require moderately high strength and high fracture toughness. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties...
Abstract
The extrusion alloy 7005 is used as extruded structural members, where welded or brazed assemblies require moderately high strength and high fracture toughness. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and fabrication characteristics of this 7xxx series alloy.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003185
EISBN: 978-1-62708-199-3
... impractical. The problem of low compressibility, that is, low green density and/or low green strength, is solved by high temperature and liquid phase sintering and through the use of special consolidation methods such as hot isostatic pressing and extrusion. Annealing Although the term annealing refers...
Abstract
This article focuses on the significant fundamental powder characteristics, which include particle size, particle size distribution, particle shape, and powder purity, followed by an overview of general and individual powder production processes such as mechanical, chemical, electrochemical, atomizing, oxide reduction, and thermal decomposition processes. It also covers the consolidation of powders by pressing and sintering, as well as by high density methods. Further emphasis is provided on the distinguishing features of powders, their manufacturing processes, compacting processes, and consolidated part properties. In addition, a glossary of powder metallurgy terms is included.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004007
EISBN: 978-1-62708-185-6
... In addition to cold hydrostatic extrusion, attempts have been made to extrude conventional metals at elevated temperatures, as reviewed above for intermetallics. This has been shown ( Ref 95 ) to be beneficial for difficult-to-work materials such as high-strength aluminum alloys, titanium alloys, refractory...
Abstract
This article begins with a general review of the effects of changes in stress state on processing of materials. It describes the fundamentals of hydrostatic extrusion and reviews the various issues and benefits associated with hydrostatic extrusion. The article discusses the hydrostatic extrusion of structural alloys, composites, brittle materials, and intermetallics or intermetallic compounds, with examples. It concludes with a discussion on the attempts made to extend the hydrostatic extrusion to higher temperatures.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006125
EISBN: 978-1-62708-175-7
...) alloy as a function of temperature. For comparison, Table 1 summarizes approximate temperature ranges for the various processing stages. Hot working occurs on the high-temperature plateau, where strength is lowest. Near the upper end of the hot-working range, dynamic recrystallization occurs...
Abstract
The residual porosity in sintered refractory metal ingots is usually eliminated by different densification processes, such as thermomechanical processes. This article focuses on thermomechanical processing of tungsten, molybdenum, and tantalum. It provides an overview of liquid-phase sintering of tungsten heavy alloys and describes the infiltration of tungsten and molybdenum for attaining full density. The article concludes by providing information on hot isostatic pressing of refractory metal alloys to full density.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003119
EISBN: 978-1-62708-199-3
...) in dissociated ammonia; N2, nitrogen alloyed with high strength and medium elongation, sintered at 1290 °C (2350 °F) in dissociated ammonia; L, low carbon with lower strength and highest elongation, sintered at 1290 °C (2350 °F) in partial vacuum, cooled to avoid nitrogen absorption; HT, martensitic grade...
Abstract
Stainless steel powder metallurgy (P/M) parts represent an important and growing segment of the P/M industry. This article describes the processing, properties, and composition of medium-density and high-density P/M stainless steels. Medium-density materials are processed by pressing and sintering prealloyed stainless powders. High-density materials are produced by hot isostatic pressing, cold isostatic pressing followed by extrusion, or metal injection molding. The comparison of mechanical properties of these P/M stainless steels is represented graphically. The article contains a table that lists the effect of iron, carbon, nitrogen, oxygen, and density on the corrosion resistance of the sintered austenitic stainless steels.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006124
EISBN: 978-1-62708-175-7
... pressed at 1300 to 1500 °C (2370 to 2730 °F) to densities of 99% of theoretical ( Ref 20 ), but higher impurities and less uniform microstructures decrease ductility. Niobium and Niobium Alloys Niobium was originally processed by PM, but high-temperature extrusion and forging of electron-beam...
Abstract
This article discusses the pressing and sintering of various refractory metal powders for the production of intermediate products as well as special cases of finished products. The metal powders considered include tungsten, molybdenum, tantalum, niobium and their alloys, as well as rhenium.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006094
EISBN: 978-1-62708-175-7
... the material, instead using a high strength version of cast and wrought alloy 718 where possible. An extruded and isoforged process similar to that used by P&W was qualified using the extrusion press at Cameron Iron Works. As-HIP material remained in production for high-pressure blade-retainer application...
Abstract
Superalloys are predominantly nickel-base alloys that are strengthened by solid-solution elements including molybdenum, tungsten, cobalt, and by precipitation of a Ni 3 (Al, Ti) type compound designated as gamma prime and/or a metastable Ni 3 Nb precipitate designated as gamma double prime. This article provides a discussion on the conventional processing, compositions, characteristics, mechanical properties, and applications of powder metallurgy (PM) superalloys. The conventional processing of PM superalloys involves production of spherical prealloyed powder, screening to a suitable maximum particle size, blending the powder to homogenize powder size distribution, loading powder into containers, vacuum outgassing and sealing the containers, and consolidating the powder to full density. PM superalloys include Rene 95, IN-100, LC Astroloy, Udimet 720, N18, ME16, RR1000, Rene 88DT, PA101, MERL 76, AF2-1DA, Inconel 706, AF115, and KM4. The article reviews specialized PM superalloy processes and technical issues in the usage of PM superalloys.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003008
EISBN: 978-1-62708-200-6
...-modified acrylics Property Flow grade Test method Low Medium High Refractive index number 1.49 1.49 1.49 ASTM D 542 Specific gravity 1.18 1.17 1.15 ASTM D 792 Light transmission, % 92 92 90 ASTM D 1003 Haze, % 3 3 4 ASTM D 638 Tensile strength, MPa (ksi) 59...
Abstract
This article discusses the family characteristics, commercial forms, applications, resin grades, and mechanical and physical properties of traditional engineering thermoplastics in their neat (unmodified) form and as compounds and composites, namely, acrylonitrile-butadiene-styrenes, acrylics, high-density polyethylenes, reinforced polypropylenes, high-impact polystyrenes, polyvinyl chloride, styrene-acrylonitriles, and styrene-maleic anhydrides.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001064
EISBN: 978-1-62708-162-7
..., or in various combinations—enable aluminum alloys to attain high strength. Designers of aircraft and aerospace systems generally like using aluminum alloys because they are reliable, reasonably isotropic, and low in cost compared to more exotic materials such as organic composites. Aluminum alloys do have...
Abstract
This article discusses the applications of high-strength aluminum powder metallurgy (P/M) alloys, detailing the advantages, properties, and the various steps involved in P/M technology, including powder production, powder processing, and degassing and consolidation. Three areas of design efforts to push the inherent advantages of aluminum alloys to new limits are also covered: high ambient-temperature strength with improved corrosion and stress corrosion cracking resistance; improved elevated-temperature properties so aluminum alloys can more effectively compete with titanium alloys; and increased stiffness and/or reduced density for aluminum alloys to compete with organic composites. An appendix provides a detailed account of the properties, processing, and applications of conventionally pressed and sintered aluminum P/M alloys.
1