1-20 of 2068 Search Results for

low-carbon steel (low-carbon steel, general)

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001404
EISBN: 978-1-62708-173-3
... steels. The article describes six general classes of the metal: low-carbon steels, high-strength low-alloy steels, quenched-and-tempered steels, heat-treatable low-alloy steels, thermal-mechanical-controlled processing steels, and chromium-molybdenum steels. It concludes with an illustration of steels...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001414
EISBN: 978-1-62708-173-3
... or martensitic stainless steel to carbon or low-alloy steel for general service (not high-temperature service), the use of austenitic stainless steel or nickel-base (NiCrFe) filler metal can produce welds of suitable quality if correct welding procedures are followed. (If an austenitic stainless steel or NiCrFe...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003098
EISBN: 978-1-62708-199-3
... lists the specification requirements given in ASTM standards and in SAE J435c. Steel castings are classified according to their carbon or alloy composition into four general groups. Carbon steel castings account for three of these groups: low-carbon steel castings with less than 0.20″ carbon, medium...
Book Chapter

By Malcolm Blair
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001023
EISBN: 978-1-62708-161-0
... Abstract Steel castings can be made from any of the many types of carbon and alloy steel produced in wrought form. They are divided into four general groups according to composition. Carbon and low-alloy steel castings can meet a wide range of application requirements because composition...
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005771
EISBN: 978-1-62708-165-8
... treater can process the parts for the correct time at the proper temperature. Carburizing and Carbonitriding Carburizing is the addition of carbon to the surface of low-carbon steels at temperatures (generally between 850 and 980 °C, or 1560 and 1800 °F) at which austenite, with its high solubility...
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002179
EISBN: 978-1-62708-188-7
... Cold working increases the hardness of the ferrite and reduces the strain-hardening rate during metal turning. The chip length is shorter and the surface finish generally smoother because of smaller amounts of built-up edge when turning cold-worked or drawn low-carbon steel. Rephosphorized...
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005775
EISBN: 978-1-62708-165-8
... material to be aluminized. Materials fall into one of the following general classifications: Class I: carbon and low-alloy steels and copper Class II: ferritic and martensitic stainless steels and austenitic stainless steels with less than 20% Ni Class III: austenitic stainless steels...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005643
EISBN: 978-1-62708-174-0
... shoes; filler wire fed into slag pool and melted by resistance heating; no arc Slag Carbon, low-alloy and high-alloy steel 50 mm (2.0 in.) and upward Welding thick sections for press frames, pressure vessels, shafts, etc.; foundry and steelworks applications; general engineering Submerged arc...
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005983
EISBN: 978-1-62708-166-5
... to atmosphere generators Table 2 Guide to atmosphere generators Metals to be Processed Process Time Cycle Appearance Temperature Range Suggested Atmosphere Generator (b) Long (a) Short Bright Clean °F °C Low Carbon Steels Anneal … X X … 1200–1350 (649–732) Exogas (c) , (d...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001034
EISBN: 978-1-62708-161-0
... successfully with traditional medium-carbon low-alloy steels. Steels with lower CE values generally exhibit good weldability. When the CE of a steel is less than 0.45 wt%, weld cracking is unlikely, and no heat treatment is required. When the CE is between 0.45 and 0.60 wt%, weld cracking is likely...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001008
EISBN: 978-1-62708-161-0
.... Carbon profoundly changes the phase relationships, microstructure, and properties in steels. Generally, carbon content is kept low in steels that require high ductility, high toughness, and good weldability, but is maintained at higher levels in steels that require high strength, high hardness, fatigue...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003094
EISBN: 978-1-62708-199-3
... compositions; however, the vast majority are unalloyed, low-carbon steels selected for stamping applications, such as automobile bodies and appliances. For these major applications, typical compositions are 0.03 to 0.10% C, 0.15 to 0.50% Mn, 0.035% P (max), and 0.04% S (max). Generally, rimmed (or capped...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005601
EISBN: 978-1-62708-174-0
... Abstract This article describes the process features, advantages, limitations, and applications of the flux cored arc welding (FCAW) as well as the equipment used in the process. Base metals, namely, carbon and low-alloy steels, stainless steels, and nickel-base alloys, welded by the FCAW...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003100
EISBN: 978-1-62708-199-3
... that of carbon steel General structural purposes, included welded, bolted, or riveted bridges and buildings A 633 Normalized high-strength low-alloy structural steel Nb, V, Cr, Ni, Mo, Cu, N, Si Plate, bar, and shapes ≤150 mm (6 in.) in thickness Enhanced notch toughness; yield strengths of 290 to 415...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001031
EISBN: 978-1-62708-161-0
... of the amount of elongation in 50 mm (2 in.) are listed in Tables 1 and 2 for common formable grades of steel sheet. Generally, an elongation of 35 to 45% in 50 mm (2 in.) is normal for conventional low-carbon steels, with higher values indicating better formability. Uniform Elongation The total...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001355
EISBN: 978-1-62708-173-3
... to weld carbon, low-alloy steel, and stainless steels in the construction of pressure vessels and piping for the chemical processing, petroleum refining, and power-generation industries. In addition, flux-cored electrodes are used to weld some nickel-base alloys. Flux-cored electrodes are also used...
Book Chapter

By R.J. Glodowski
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001016
EISBN: 978-1-62708-161-0
..., patenting, and controlled cooling. When the end product must be heat treated, the heat treatment and mechanical properties should be clearly defined. Carbon steel rods are produced in various grades or compositions: low-carbon, medium-low-carbon, medium-high-carbon, and high-carbon steel wire rods. Rod...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003246
EISBN: 978-1-62708-199-3
...-austenite grain boundaries in martensitic steels by use of selective etchants is difficult but can often be achieved ( Fig. 7 ). In general, the low-carbon martensitic steels are much more difficult to etch in this manner than medium- and high-carbon steels. In the case of lath martensite, the packet size...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003763
EISBN: 978-1-62708-177-1
..., boron, and aluminum. In a previous article, “Metallography and Microstructures of Low-Carbon and Coated Steels,” in this Volume, the metallographic practices used for low- and very-low-carbon steels (those with carbon contents generally lower than approximately 0.10% C) are discussed. This article...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003761
EISBN: 978-1-62708-177-1
...-carbon steels generally contain less than approximately 0.10% C and are used in vast quantities in the automotive, appliance, and container industries. One of the major attributes of low-carbon steels is good formability, that is, the ease to form a part by stamping, pressing, bending, stretching, and so...