1-20 of 1250

Search Results for low-carbon metallic matrix

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006333
EISBN: 978-1-62708-179-5
... Abstract Malleable iron, like ductile iron, possesses considerable ductility and toughness because of its combination of nodular graphite and low-carbon metallic matrix. This article discusses melting practices such as batch cold melting and duplexing, and their control mechanisms...
Book Chapter

Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001005
EISBN: 978-1-62708-161-0
... Abstract Malleable iron possesses considerable ductility and toughness because of its combination of nodular graphite and a low-carbon metallic matrix. The desired formation of temper carbon in malleable irons has two basic requirements. First, graphite should not form during the solidification...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006347
EISBN: 978-1-62708-179-5
... Abstract Malleable iron, like ductile iron, possesses considerable ductility and toughness because of its combination of nodular graphite and low-carbon metallic matrix. There are two basic types of malleable iron: blackheart and whiteheart. This article focuses on the blackheart malleable iron...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003110
EISBN: 978-1-62708-199-3
... and a low-carbon metallic matrix. Consequently, malleable iron and ductile iron are suitable for some of the same applications requiring good ductility and toughness and the choice between them is based on economy rather than properties. However, because ductile iron castings have similar properties...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002465
EISBN: 978-1-62708-194-8
... Abstract This article describes the interaction of composition, manufacturing process, and composite properties of composites. The manufacturing process includes resin-matrix, metal-matrix, and carbon/carbon matrix processing. The article discusses various mechanical properties of composites...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003359
EISBN: 978-1-62708-195-5
... Abstract For the reinforcement of metal-matrix composites, four general classes of materials are commercially available: oxide fibers based primarily on alumina and alumina silica systems, nonoxide systems based on silicon carbide, boron fibers, and carbon fibers. This article discusses the key...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003480
EISBN: 978-1-62708-195-5
... Abstract This article presents an overview of advanced composites, namely, polymer matrix composites, metal-matrix composites, ceramic-matrix composites, and carbon-matrix composites. It also provides information on the properties and applications of the composites in thermal management...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005326
EISBN: 978-1-62708-187-0
... of its combination of nodular graphite and low-carbon metallic matrix. Because of the way in which graphite is formed in malleable iron, however, the nodules are not truly spherical, as they are in ductile iron, but are irregularly shaped aggregates. Malleable iron and ductile iron are used for some...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003478
EISBN: 978-1-62708-195-5
... of a carbon-carbon thermal shield is the low density of the material. Carbon-carbon thermal shields have been shown to provide an approximately 50% weight reduction over metallic ones. The temperature stability and stiffness have been proven to be acceptable, as carbon-carbon thermal shields have performed...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003422
EISBN: 978-1-62708-195-5
... in the circumferential and radial directions within an array of axial metal rods, which are then replaced by dry yarns. Densification Processing Generally, the best CCCs result from a densification process that fills the open volume of the preform with a dense, well-bonded carbon- graphite matrix. The actual...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002478
EISBN: 978-1-62708-194-8
... are not resolved in an anisotropic plate model, and the material can be treated much as a common engineering metal. (The term “black aluminum” is often used to describe carbon fiber/epoxy-matrix composites.) The design of composite materials is simplified by this approach, and much of the potential improvement...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003358
EISBN: 978-1-62708-195-5
... aluminum metal-matrix composites Fig. 3 Materials properties and formability as a function of reinforcement particle size The shape of a particle is characterized by its aspect ratio, the ratio of its longest to shortest linear dimension. Most ceramic reinforcement particles have a low...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003421
EISBN: 978-1-62708-195-5
... temperature of the matrix (or large volume changes will occur) and below the degradation temperature of the reinforcing fibers. The pyrolysis atmosphere is most commonly argon or nitrogen, although in ammonia a pure amorphous silicon nitride with low amounts of free carbon can be obtained ( Ref 49...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003352
EISBN: 978-1-62708-195-5
... Abstract Reinforcing fibers are a key component of polymer-matrix composites (PMCs), ceramic-matrix composites (CMCs), and metal-matrix composites (MMCs). This article discusses the mechanical and nonmechanical properties of these composites. It presents an overview of PMC, CMC, and MMC...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003064
EISBN: 978-1-62708-200-6
... a temperature range of several hundred degrees. At higher temperatures >700 °C, or 1290 °F), the CTE for all carbon fibers is positive. Zero-CTE metal matrix composites require the more negative CTE and very-high-modulus fibers (≥650 GPa, or 95 × 10 6 psi) that are only available in mesophase pitch-based...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003449
EISBN: 978-1-62708-195-5
... material, while retaining such properties as low density, high hardness, high strength, high stiffness, thermal stability, corrosion resistance, and wear resistance. The current interest in ceramic-matrix and carbon-carbon (C-C) composites derives primarily from the need for materials that can operate...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003351
EISBN: 978-1-62708-195-5
... and latitude in structural design. The most commonly used constituent materials include fibers of glass, carbon, and aramid, followed by various high-temperature ceramics. In addition, a host of polymeric resins are used, as well as metallic alloys and even ceramics. However, the constituent materials continue...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003031
EISBN: 978-1-62708-200-6
..., as merely fiber composites or composites. In addition, composites with organic (resin) matrices are emphasized, both because such composites are the most commonly used and because of the significant dissimilarities between organic-matrix composites and those made with metal, ceramic, and carbon matrices...
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000625
EISBN: 978-1-62708-181-8
... Abstract This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of metal-matrix composites, including tungsten fiber-reinforced aluminum, tungsten fiber-reinforced carbon steel, and tungsten fiber-reinforced silver. The fractographs illustrate...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003162
EISBN: 978-1-62708-199-3
..., and (if present) molybdenum. The matrix around these carbide particles can be austenitic, pearlitic, or martensitic. With regard to industrial applications of the high-chromium abrasion alloys, the low-carbon (2 to 3% C) hypoeutectic materials are usually selected for situations involving moderate abrasion...