Skip Nav Destination
Close Modal
By
Darrell Manente
By
Harold Burrier, Jr.
By
Bruce L. Bramfitt, Samuel J. Lawrence
By
Bruce R. Somers
By
Michael L. Marucci, James A. Catanese
By
Raymond W. Monroe
Search Results for
low-alloy steels
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 2684
Search Results for low-alloy steels
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Brazing of Heat-Resistant Alloys, Low-Alloy Steels, and Tool Steels
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001453
EISBN: 978-1-62708-173-3
..., and fixturing. The article also provides an overview of the brazing of blow-alloy steels and tool steels and oxide dispersion-strengthened alloys. brazing brazing filler metals cobalt-base alloys fixturing heat-resistant alloys low-alloy steels nickel-base alloys oxide dispersion-strengthened...
Abstract
This article focuses primarily on the various steps involved in the brazing of heat-resistant alloys (nickel- and cobalt-base alloys). The major steps include the selection of brazing filler metals, surface cleaning and preparation, brazing processes and their corresponding atmospheres, and fixturing. The article also provides an overview of the brazing of blow-alloy steels and tool steels and oxide dispersion-strengthened alloys.
Book Chapter
Hardenability Calculation of Carbon and Low-Alloy Steels with Low or Medium Carbon
Available to PurchaseSeries: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005796
EISBN: 978-1-62708-165-8
... of shallow-hardening, low-carbon, plain carbon, and low-alloy medium-carbon steels ranging from classical fracture and etching, Grossmann hardenability, and Jominy end-quench testing to manual and computerized computational methods. The article then uses this as a backdrop for the implementation of the core...
Abstract
Hardenability is a composition-dependent property of steel and depends on carbon content and other alloying elements as well as the grain size of the austenite phase. This article provides an overview of a wide range of testing procedures used to determine and quantify hardenability of shallow-hardening, low-carbon, plain carbon, and low-alloy medium-carbon steels ranging from classical fracture and etching, Grossmann hardenability, and Jominy end-quench testing to manual and computerized computational methods. The article then uses this as a backdrop for the implementation of the core concepts of hardenability in a variety of predictive tools for calculating hardenability. The Caterpillar 1E0024 Hardenability Calculator, a personal computer-based program, calculates the Jominy curve based on the steel composition. The article also describes the method for boron and nonboron steels, with calculation examples for 8645 steel and 86B45 steel.
Book Chapter
High-Strength Structural and High-Strength Low-Alloy Steels
Available to PurchaseSeries: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001025
EISBN: 978-1-62708-161-0
... Abstract This article considers four types of high-strength structural steels: heat-treated low-alloy steels, as-rolled carbon-manganese steels, heat-treated (normalized or quenched and tempered) carbon steels, and as-rolled high-strength low-alloy (HSLA) steels (which are also known...
Abstract
This article considers four types of high-strength structural steels: heat-treated low-alloy steels, as-rolled carbon-manganese steels, heat-treated (normalized or quenched and tempered) carbon steels, and as-rolled high-strength low-alloy (HSLA) steels (which are also known as microalloyed steels). The article places emphasis on HSLA steels, which are an attractive alternative in structural applications because of their competitive price per-yield strength ratios. HSLA steels are primarily hot-rolled into the usual wrought product forms and are furnished in the as-hot-rolled condition. In addition to hot-rolled products, HSLA steels are also furnished as cold-rolled sheet and forgings. This article describes the different categories of HSLA steels and provides a summary of characteristics and intended uses of HSLA steels described in the American Society for Testing and Materials (ASTM) specifications. The article also presents some applications of HSLA steels.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001028
EISBN: 978-1-62708-161-0
... Abstract Carbon steels have wider usage than any other metal because of their versatility and low cost. Required hardenability is the most important factor influencing a choice between carbon- and alloy steel. By increasing hardenability, alloying elements extend the potential for enhanced...
Abstract
Carbon steels have wider usage than any other metal because of their versatility and low cost. Required hardenability is the most important factor influencing a choice between carbon- and alloy steel. By increasing hardenability, alloying elements extend the potential for enhanced properties to the large sections required for many applications. Alloy steels are ordinarily quench hardened and tempered to the level of strength desired for the application. Distortion during heat treatment may occur with almost any hardenable carbon or alloy steel, although distortion is usually more severe for carbon grades than for alloy grades of equivalent carbon content. The relatively low hardenability of carbon steels is a primary reason for choosing them in preference to alloy steels for parts that are to be locally heat treated by flame or induction hardening. Fabrication processes are performed on hardenable carbon and alloy steels in the unhardened condition, that is, prior to heat treating.
Book Chapter
Hardenability of Carbon and Low-Alloy Steels
Available to PurchaseSeries: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001029
EISBN: 978-1-62708-161-0
... suited to very low hardenability steels include the hot-brine test and the surface-area-center test. The article discusses the effects of varying carbon content as well as the influence of different alloying elements. It includes charts and a table that serve as a general steel hardenability selection...
Abstract
Hardenability of steel is the property that determines the depth and distribution of hardness induced by quenching. Hardenability is usually the single most important factor in the selection of steel for heat-treated parts. The hardenability of a steel is best assessed by studying the hardening response of the steel to cooling in a standardized configuration in which a variety of cooling rates can be easily and consistently reproduced from one test to another. These include the Jominy end-quench test, the carburized hardenability test, and the air hardenability test. Tests that are more suited to very low hardenability steels include the hot-brine test and the surface-area-center test. The article discusses the effects of varying carbon content as well as the influence of different alloying elements. It includes charts and a table that serve as a general steel hardenability selection guide.
Book Chapter
Classification and Designation of Carbon and Low-Alloy Steels
Available to PurchaseSeries: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001009
EISBN: 978-1-62708-161-0
... Abstract This article addresses classifications and designations for carbon steels and low-alloy steels, particularly high-strength low-alloy (HSLA) steels, based on chemical composition, manufacturing methods, finishing method, product form, deoxidation practice, microstructure, required...
Abstract
This article addresses classifications and designations for carbon steels and low-alloy steels, particularly high-strength low-alloy (HSLA) steels, based on chemical composition, manufacturing methods, finishing method, product form, deoxidation practice, microstructure, required strength level, heat treatment and quality descriptors. It describes the effects of alloying elements on the properties and characteristics of steels. The article provides extensive tabular data pertaining to domestic and international designations of steels.
Book Chapter
Physical Properties of Carbon and Low-Alloy Steels
Available to PurchaseSeries: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001010
EISBN: 978-1-62708-161-0
... Abstract This article discusses the following physical properties of AISI and SAE grades of carbon and low-alloy steels: coefficients of linear thermal expansion; thermal conductivity; specific heat; and electrical resistivity. AISI grade steel carbon steels low-alloy steels physical...
Abstract
This article discusses the following physical properties of AISI and SAE grades of carbon and low-alloy steels: coefficients of linear thermal expansion; thermal conductivity; specific heat; and electrical resistivity.
Book Chapter
Heat Treating of Low-Alloy Steels
Available to PurchaseSeries: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005954
EISBN: 978-1-62708-168-9
... Abstract This article summarizes some of the effects of the major alloying elements in low-alloy steels and the heat treating for some common types of low-alloy steels. Coverage includes common alloys of the following low-alloy steel types: low-alloy manganese steels, low-alloy molybdenum...
Abstract
This article summarizes some of the effects of the major alloying elements in low-alloy steels and the heat treating for some common types of low-alloy steels. Coverage includes common alloys of the following low-alloy steel types: low-alloy manganese steels, low-alloy molybdenum steels, low-alloy chromium-molybdenum steels, low-alloy nickel-chromium-molybdenum steels, low-alloy nickel-molybdenum steels, low-alloy chromium steels, low-alloy chromium-vanadium steels, and low-alloy silicon-manganese steels. The article reviews heat treating parameters and processing considerations for each category of steel, including spherodizing, normalizing, annealing, hardening, and tempering.
Book Chapter
Thermal Properties of Carbon and Low-Alloy Steels
Available to PurchaseSeries: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0006002
EISBN: 978-1-62708-168-9
... Abstract This article is a comprehensive collection of tables that present information on the various thermal properties, namely, the coefficient of linear thermal expansion, thermal conductivity, and specific heat, of carbon and low-alloy steels. alloy steel carbon steel coefficient...
Abstract
This article is a comprehensive collection of tables that present information on the various thermal properties, namely, the coefficient of linear thermal expansion, thermal conductivity, and specific heat, of carbon and low-alloy steels.
Book Chapter
Metallography and Microstructures of Carbon and Low-Alloy Steels
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003763
EISBN: 978-1-62708-177-1
... Abstract This article describes the microstructure and metallographic practices used for medium- to high-carbon steels as well as for low-alloy steels. It explains the microstructural constituents of plain carbon and low-alloy steels, including ferrite, pearlite, and cementite. The article...
Abstract
This article describes the microstructure and metallographic practices used for medium- to high-carbon steels as well as for low-alloy steels. It explains the microstructural constituents of plain carbon and low-alloy steels, including ferrite, pearlite, and cementite. The article provides information on how to reveal the various constituents using proven metallographic procedures for both macrostructural and microstructural examination. Emphasis is placed on the specimen preparation procedures such as sectioning, mounting, grinding, and polishing. The article illustrates the use of proven etching techniques for plain carbon and low-alloy steels.
Book Chapter
High-Strength Structural and High-Strength Low-Alloy Steels
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003100
EISBN: 978-1-62708-199-3
... Abstract This article describes the types of steels, including high-strength structural carbon steels and high-strength low-alloy steels (HSLA), available in all standard wrought forms such as sheet, strip, plate, structural shapes, bars, bar-size shapes. It discusses the special sections...
Abstract
This article describes the types of steels, including high-strength structural carbon steels and high-strength low-alloy steels (HSLA), available in all standard wrought forms such as sheet, strip, plate, structural shapes, bars, bar-size shapes. It discusses the special sections that are characterized by higher yield strengths than those of plain carbon structural steels. The article tabulates the typical chemical compositions, tensile properties, heat treatment, product sizes, plate thickness and intended uses of high-strength steels. Further, it presents a short note on heat treated structural low-alloy grades.
Book Chapter
Introduction to the Selection of Carbon and Low-Alloy Steels
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001404
EISBN: 978-1-62708-173-3
... Abstract This article presents in-depth metallurgical information about the response of carbon and low-alloy steels to welding conditions and micro-structural evolution in the weld heat-affected zone. It discusses the fabrication weldability and service weldability of carbon and low-alloy...
Abstract
This article presents in-depth metallurgical information about the response of carbon and low-alloy steels to welding conditions and micro-structural evolution in the weld heat-affected zone. It discusses the fabrication weldability and service weldability of carbon and low-alloy steels. The article describes six general classes of the metal: low-carbon steels, high-strength low-alloy steels, quenched-and-tempered steels, heat-treatable low-alloy steels, thermal-mechanical-controlled processing steels, and chromium-molybdenum steels. It concludes with an illustration of steels' susceptibility to hydrogen-assisted cold cracking relative to carbon content and carbon equivalent.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001433
EISBN: 978-1-62708-173-3
... Abstract This article discusses factors involved in selecting welding processes and consumables and establishing procedures and practices for the arc welding of low-alloy steels. It provides information on welding consumables in terms of filler metals and fluxes and shielding gases. The article...
Abstract
This article discusses factors involved in selecting welding processes and consumables and establishing procedures and practices for the arc welding of low-alloy steels. It provides information on welding consumables in terms of filler metals and fluxes and shielding gases. The article describes the various categories of low-alloy steels, such as high-strength low-alloy (HSLA) structural steels, high-strength low-alloy quenched and tempered(HSLA Q&T) structural steels, low-alloy steels for pressure vessels and piping, medium-carbon heat-treatable (quenched and tempered) low-alloy (HTLA) steels, ultrahigh-strength low-alloy steels, and low-alloy tool and die steels. It concludes with a discussion on repair practices for tools and dies.
Book Chapter
Production of Powder Metallurgy Carbon and Low-Alloy Steels
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006081
EISBN: 978-1-62708-175-7
... Abstract This article briefly reviews the production methods and characteristics of plain carbon and low-alloy water-atomized iron and steel powders, high-porosity iron powder, carbonyl iron powder, and electrolytic iron powder. It emphasizes on atomized powders, because they are the most...
Abstract
This article briefly reviews the production methods and characteristics of plain carbon and low-alloy water-atomized iron and steel powders, high-porosity iron powder, carbonyl iron powder, and electrolytic iron powder. It emphasizes on atomized powders, because they are the most widely used materials for ferrous powder metallurgy. The article provides information on the properties and applications of these powders. It also includes an overview of diffusion alloying, basics of admixing, and bonded premixes.
Book Chapter
Corrosion of Cast Carbon and Low-Alloy Steels
Available to PurchaseBook: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003811
EISBN: 978-1-62708-183-2
... Abstract This article, primarily focusing on atmospheric corrosion of carbon and low-alloy steels, describes the factors that must be considered by alloy casting users in material selection. It presents compositions of cast steels tested in atmospheric corrosion in a tabular form. The article...
Abstract
This article, primarily focusing on atmospheric corrosion of carbon and low-alloy steels, describes the factors that must be considered by alloy casting users in material selection. It presents compositions of cast steels tested in atmospheric corrosion in a tabular form. The article graphically presents the results of a research program that compared the corrosion resistance of nine cast steels in marine and industrial atmospheres. It provides a comparison of corrosion rates of cast steels, malleable cast iron, and wrought steel after three years of exposure in two atmospheres. Conclusions drawn from these tests are also presented.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003806
EISBN: 978-1-62708-183-2
... Abstract Low-alloy steels are used in a broad spectrum of applications. In some cases, corrosion resistance is a major factor in alloy selection; in other applications, it is only a minor consideration. This article reviews the applications of alloy steel products in four major industries...
Abstract
Low-alloy steels are used in a broad spectrum of applications. In some cases, corrosion resistance is a major factor in alloy selection; in other applications, it is only a minor consideration. This article reviews the applications of alloy steel products in four major industries, namely, oil and gas production, energy conversion systems, marine applications, and chemical processing. Emphasis is placed on the corrosion characteristics of the products, which are used in various applications of each industry.
Image
Case-hardness gradients for two carbon steels and four low-alloy steels sho...
Available to PurchasePublished: 01 August 2013
Fig. 2 Case-hardness gradients for two carbon steels and four low-alloy steels showing effects of carburizing temperature and time. Specimens measuring 19 mm diam by 51 mm (¾ in. diam by 2 in.) were carburized, air cooled, reheated in neutral salt at 845 °C (1550 °F), and quenched in nitrate
More
Image
Published: 01 January 2002
Image
Room-temperature properties of cast low-alloy steels. QT, quenched and temp...
Available to PurchasePublished: 01 December 2008
Fig. 9 Room-temperature properties of cast low-alloy steels. QT, quenched and tempered; NT, normalized and tempered
More
Image
Room-temperature properties of cast low-alloy steels. QT, quenched and temp...
Available to PurchasePublished: 01 December 2008
Fig. 1 Room-temperature properties of cast low-alloy steels. QT, quenched and tempered; NT, normalized and tempered. Source: Ref 1
More
1