Skip Nav Destination
Close Modal
Search Results for
low-alloy steel plate
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1772
Search Results for low-alloy steel plate
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001013
EISBN: 978-1-62708-161-0
... and medium-carbon constructional grades, with the low-carbon grades predominating. Many alloy steels are also produced as plate. In the final structure, however, alloy steel plate is sometimes heat treated to achieve mechanical properties superior to those typical of the hot-finished product. Steelmaking...
Abstract
The production and use of steel plate is aided by a system of standard designations and associated specifications defining composition, property, and performance ranges. This article contains an extensive amount of information on the designations and grades of plate products and how they are made. Although most steel plate is used in the hot-finished condition, some applications require one or more heat treating steps to mitigate imperfections and/or improve relevant qualities. The article discusses these interconnected factors as well as their impact on mechanical properties and critical fabrication issues, including formability, machinability, and weldability.
Image
Published: 31 October 2011
Fig. 4 (a) Friction stir weld on a high-strength low-alloy steel plate part. (b) Corresponding x-ray image showing a long wormhole defect along the advancing side of the weld. Courtesy of GE
More
Image
Published: 01 August 2018
Fig. 4 (a) Friction stir weld on a high-strength low-alloy steel plate part. (b) Corresponding x-ray image showing a long wormhole defect along the advancing side of the weld. Courtesy of GE
More
Image
in Metallography and Microstructures of Carbon and Low-Alloy Steels[1]
> Metallography and Microstructures
Published: 01 December 2004
Fig. 42 Microstructure of quenched low-alloy steel showing plate martensite. 2% nital etch. Original magnification 1000×
More
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003094
EISBN: 978-1-62708-199-3
... Abstract Low-carbon steel sheet and strip are used primarily in consumer goods. This article discusses quality descriptors and mechanical properties of low-carbon steel sheet and strip and carbon and low-alloy steel plate. Alloy steel sheet and strip are used primarily for those special...
Abstract
Low-carbon steel sheet and strip are used primarily in consumer goods. This article discusses quality descriptors and mechanical properties of low-carbon steel sheet and strip and carbon and low-alloy steel plate. Alloy steel sheet and strip are used primarily for those special applications that require the mechanical properties normally obtained by heat treatment. Steel sheet is coated in coil form before fabrication either by the steel mills or by specialists called coil coaters. Porcelain enamels are glass coatings applied primarily to products or parts made of sheet steel, cast iron, or aluminum to improve appearance and to protect the metal surface.
Image
Published: 01 January 2002
Fig. 3 Service failure of a low-alloy steel nut by LMIE. Cadmium-plated, 4140 low-alloy steel (44 HRC) nuts were inadvertently used on bolts for clamps used to join ducts that carried hot (500 °C, or 930 °F) air from the compressor of a military jet engine. (a) The nuts were fragmented
More
Image
Published: 01 January 1993
Fig. 4 Alternative procedures for joining stainless-clad carbon and low-alloy steel plate involving different techniques for replacing portions of the stainless steel cladding removed before welding the carbon or low-alloy steel side. The joint is prepared by beveling side A and removing
More
Image
Published: 01 January 1993
Fig. 5 Procedures for welding V-groove butt and corner joints in stainless-clad carbon or low-alloy steel plate, using stainless steel filler metal exclusively. The clad plates are beveled and fitted up (a and b, butt and corner joints). The root of the weld is cleaned and gouged, if necessary
More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001414
EISBN: 978-1-62708-173-3
.... Welding Austenitic-Stainless-Clad Carbon or Low-Alloy Steels To preserve its desirable properties, stainless-clad plate can be welded by either of the two following methods, depending on plate thickness and service conditions. The unclad sides of the plate sections are beveled and welded...
Abstract
This article briefly describes the welding of various stainless steels to dissimilar steels. The stainless steels include austenitic stainless steels, ferritic stainless steels, and martensitic stainless steels. The dissimilar steels include carbon and low-alloy steels. In addition, the article provides information on the cladding of austenitic stainless steel to carbon or low-alloy steels.
Book Chapter
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002420
EISBN: 978-1-62708-193-1
... −0.092 2.443 −0.762 … As-received 929 833 1446 58 … 0.867 214 0.125 1310 1465 −0.105 1.320 −0.719 HSB 77 V … QT 852 745 1327 57 … 0.834 210 0.088 1145 1194 −0.067 1.176 −0.701 Material: Low-alloy steel, plate, tested at −60 °C 2 MnCr 7 8 … Finish-rolled air...
Abstract
The four-point method to estimate fatigue life behavior from tensile properties allows the construction of fatigue life curves from more readily available handbook data. This article provides information on the strain-based four-point method and the stress-based four-point method. The effects of mean stress or strain on transition fatigue life are reviewed. The article describes the determination of four fatigue-life parameters either by curve fitting actual fatigue life test data or approximating the constants from tensile properties. It contains a table that lists the tensile properties of various alloys.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001040
EISBN: 978-1-62708-161-0
..., solidification, and rolling practices, as well as the resulting microstructure. All carbon and high-strength low-alloy (HSLA) steels undergo a ductile-to-brittle transition as the temperature is lowered. The composition of a steel, as well as its microstructure and processing history, significantly affects both...
Abstract
Notch toughness is an indication of the capacity of a steel to absorb energy when a stress concentrator or notch is present. The notch toughness of a steel product is the result of a number of interactive effects, including composition, deoxidation and steelmaking practices, solidification, and rolling practices, as well as the resulting microstructure. All carbon and high-strength low-alloy (HSLA) steels undergo a ductile-to-brittle transition as the temperature is lowered. The composition of a steel, as well as its microstructure and processing history, significantly affects both the ductile-to-brittle transition temperature range and the energy absorbed during fracture at any particular temperature.. Th article focuses on various aspects of notch toughness including the effects of composition and microstructure, general influence of manufacturing practices and the interactive effects that simultaneously influence notch toughness. With the exception of working direction, most of the same chemical, microstructural, and manufacturing factors that influence the notch toughness of wrought steels also apply to cast steels. The Charpy V-notch test is used worldwide to indicate the ductile-to-brittle transition of a steel. While Charpy results cannot be directly applied to structural design requirements, a number of correlations have been made between Charpy results and fracture toughness.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001025
EISBN: 978-1-62708-161-0
... forms. In terms of mechanical properties, the heat-treated (quenched and tempered) low-alloy steels offer the best combination of strength ( Table 1 ) and toughness ( Fig. 1 ). However, these steels are available primarily as bar and plate products and only occasionally as sheet and structural shapes...
Abstract
This article considers four types of high-strength structural steels: heat-treated low-alloy steels, as-rolled carbon-manganese steels, heat-treated (normalized or quenched and tempered) carbon steels, and as-rolled high-strength low-alloy (HSLA) steels (which are also known as microalloyed steels). The article places emphasis on HSLA steels, which are an attractive alternative in structural applications because of their competitive price per-yield strength ratios. HSLA steels are primarily hot-rolled into the usual wrought product forms and are furnished in the as-hot-rolled condition. In addition to hot-rolled products, HSLA steels are also furnished as cold-rolled sheet and forgings. This article describes the different categories of HSLA steels and provides a summary of characteristics and intended uses of HSLA steels described in the American Society for Testing and Materials (ASTM) specifications. The article also presents some applications of HSLA steels.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005125
EISBN: 978-1-62708-186-3
... by this process conform to one of the plate specifications: either plain carbon or low-alloy steels, such as ASTM A515 grade 60, A515 grade 70, A516 grade 70, A285, A441, A283, A306, and A36. For the most successful three-roll forming, steels with a minimum elongation of 18% are preferred. Stainless steels, heat...
Abstract
This article discusses the mill products most often formed by the three-roll forming process. It schematically illustrates some of the shapes commonly produced from flat stock by the three-roll forming process. The article describes the two basic types of three-roll forming machines, namely, the pinch-roll type and the pyramid-roll type. It also lists the advantages of the pinch-roll machine, as compared to the pyramid-roll machine. The article analyzes the hot forming and cold forming processes for carbon or low alloy steel. It explains the procedure for forming truncated cones, bars, and bar sections by utilizing the pyramid-roll machine.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003100
EISBN: 978-1-62708-199-3
... Abstract This article describes the types of steels, including high-strength structural carbon steels and high-strength low-alloy steels (HSLA), available in all standard wrought forms such as sheet, strip, plate, structural shapes, bars, bar-size shapes. It discusses the special sections...
Abstract
This article describes the types of steels, including high-strength structural carbon steels and high-strength low-alloy steels (HSLA), available in all standard wrought forms such as sheet, strip, plate, structural shapes, bars, bar-size shapes. It discusses the special sections that are characterized by higher yield strengths than those of plain carbon structural steels. The article tabulates the typical chemical compositions, tensile properties, heat treatment, product sizes, plate thickness and intended uses of high-strength steels. Further, it presents a short note on heat treated structural low-alloy grades.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001255
EISBN: 978-1-62708-170-2
.... Builders hardware plated with a 90Cu-10Zn alloy called architectural bronze uses these same techniques. Engineering Applications Engineering applications for brass plating are also important. Brass plate on sheet steel and wire performs a lubricating function in deep drawing and wire drawing...
Abstract
Copper alloys are widely used as electroplated coatings. They can also be used with practically any substrate material that is suitable for electroplating. This article focuses on the solution composition and operating conditions for brass and bronze plating solutions. It describes the decorative and engineering applications of brass and bronze plating. The article also provides information on the treatment of waste water from brass and bronze plating operations.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001448
EISBN: 978-1-62708-173-3
... Abstract Ultrasonic welding (USW) is effectively used to join both similar and dissimilar metals with lap-joint welds. This article describes procedure considerations for the ultrasonic welding of specific material types. It reviews difficult-to-weld alloys, such as carbon and low-alloy steels...
Abstract
Ultrasonic welding (USW) is effectively used to join both similar and dissimilar metals with lap-joint welds. This article describes procedure considerations for the ultrasonic welding of specific material types. It reviews difficult-to-weld alloys, such as carbon and low-alloy steels, high-strength steels, and stainless steel, and provides information on the applications of weldable alloys such as aluminum alloys and copper alloys. The article concludes with a discussion on welding of dissimilar metal (nonferrous-to-nonferrous) combinations and its applications.
Book Chapter
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005643
EISBN: 978-1-62708-174-0
... metal welding, small-diameter pipe Gas cutting Oxyacetylene/oxygen flame … Oxygen jet injected through flame oxidizes and ejects metal along the cutting line Oxygen Carbon and low-alloy steel … Cutting and bevelling plate for welding; general engineering applications Gas tungsten arc...
Abstract
This article is a compilation of tables summarizing the fusion welding process. Included in the article is a table that presents the various fusion welding and cutting processes and their applications. Information on the general characteristics of arc welding processes is tabulated. The article also contains a list of the various criteria for selecting the suitable welding process for carbon steels.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003246
EISBN: 978-1-62708-199-3
... treated at higher-than-normal temperature to reveal the martensite more clearly. Both etched with 2% nital. (Left) Lath martensite in low-carbon alloy steel. 500×. (Right) Plate martensite (retained austenite matrix) in an Fe-1.4%C alloy. 200× Because of the important influence of grain size...
Abstract
This article is a pictorial representation of commonly observed microstructures in iron-base alloys (carbon and alloy steels, cast irons, tool steels, and stainless steels) that occur as a result of variations in chemical analysis and processing. It reviews a wide range of common and complex mixtures of constituents (single or combination of two phases) that are encountered in iron-base alloys and the complex structure that is observed in these microstructures. The single-phase constituents discussed in the article include austenite, ferrite, delta ferrite, cementite, various alloy carbides, graphite, martensite, and a variety of intermetallic phases, nitrides, and nonmetallic inclusions. The article further describes the two-phase constituents including, tempered martensite, pearlite, and bainite and nonmetallic inclusions in steel that consist of two or more phases.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001034
EISBN: 978-1-62708-161-0
... Abstract This article aims to survey the factors controlling the weldability of carbon and low-alloy steels in arc welding. It discusses the influence of operational parameters, thermal cycles, and metallurgical factors on weld metal transformations and the susceptibility to hot and cold...
Abstract
This article aims to survey the factors controlling the weldability of carbon and low-alloy steels in arc welding. It discusses the influence of operational parameters, thermal cycles, and metallurgical factors on weld metal transformations and the susceptibility to hot and cold cracking. The article addresses the basic principles that affect the weldability of carbon and low-alloy steels. It outlines the characteristic features of welds and the metallurgical factors that affect weldability. It describes the common tests to determine steel weldability. There are various types of tests for determining the susceptibility of the weld joint to different types of cracking during fabrication, including restraint tests, externally loaded tests, underbead cracking tests, and lamellar tearing tests. Weldability tests are conducted to provide information on the service and performance of welds. The major tests that are discussed in this article are weld tension test, bend test, the drop-weight test, the Charpy V-notch test, the crack tip opening displacement test, and stress-corrosion cracking test.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003763
EISBN: 978-1-62708-177-1
.... The white-appearing regions between the martensite plates in Fig. 20 are retained austenite. Retained austenite is usually avoided in plain carbon and low-alloy steels. However, recent high-strength sheet steels are designed with certain percentages of retained austenite. These steels are the dual-phase...
Abstract
This article describes the microstructure and metallographic practices used for medium- to high-carbon steels as well as for low-alloy steels. It explains the microstructural constituents of plain carbon and low-alloy steels, including ferrite, pearlite, and cementite. The article provides information on how to reveal the various constituents using proven metallographic procedures for both macrostructural and microstructural examination. Emphasis is placed on the specimen preparation procedures such as sectioning, mounting, grinding, and polishing. The article illustrates the use of proven etching techniques for plain carbon and low-alloy steels.
1