Skip Nav Destination
Close Modal
By
Charles W. Peterson, G. Ehnert, R. Liebold, K. Hörsting, R. Kühfusz
By
Brian S. Hayes, Luther M. Gammon
By
John M. Henshaw
By
B. Tomas Åström
By
Brian S. Hayes, Luther M. Gammon
By
Douglas A. McCarville, Henry A. Schaefer
Search Results for
long-fiber-reinforced thermoplastics
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 208
Search Results for long-fiber-reinforced thermoplastics
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Compression Molding
Available to PurchaseBook: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003415
EISBN: 978-1-62708-195-5
... materials, namely, glass-fiber-mat-reinforced thermoplastics, long-fiber-reinforced thermoplastics, and sheet molding compounds. The article also presents information on the application examples and market volume of compression molding. compression molding automotive composite applications composite...
Abstract
Compression molding is the single largest primary manufacturing process used for automotive composite applications. This article provides an overview of the compression molding process. It describes the basic design, materials, and processing equipment of three main groups of composite materials, namely, glass-fiber-mat-reinforced thermoplastics, long-fiber-reinforced thermoplastics, and sheet molding compounds. The article also presents information on the application examples and market volume of compression molding.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003419
EISBN: 978-1-62708-195-5
... and aligned fibers cannot flow in the fiber direction without fracturing fibers, which is usually unacceptable. The raw material is heated in an oven to melt the matrix and then stacked to form a charge that is rapidly placed in the cooled mold. Alternatively, long-fiber–reinforced thermoplastic (LFT...
Abstract
This article describes the characteristics of thermoplastic composites and its material forms. It presents the steps and considerations in manufacturing the thermoplastic composites. The article describes the various techniques of manufacturing, such as consolidation, autoclave molding, diaphragm forming, compression molding, roll forming, bladder molding, liquid molding, filament winding, and pultrusion.
Book Chapter
Matrix Microstructure Analysis of Fiber-Reinforced Composites
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009082
EISBN: 978-1-62708-177-1
... durability microstructural analysis microstructure nucleation spherulites thermoplastic-matrix carbon-fiber-reinforced composites thermoplastic-matrix composites MICROSTRUCTURAL ANALYSIS of the composite matrix is necessary to fully understand the performance of the part and its long-term...
Abstract
Microstructural analysis of the composite matrix is necessary to understand the performance of the part and its long-term durability. This article focuses on the microstructural analysis of engineering thermoplastic-matrix composites and the influence of cooling rate and nucleation on the formation of spherulites in high-temperature thermoplastic-matrix carbon-fiber-reinforced composites. It also describes the microstructural analysis of a bio-based thermosetting-matrix natural fiber composite system.
Book Chapter
Molding Compounds
Available to PurchaseBook: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003370
EISBN: 978-1-62708-195-5
... reinforcement is obtained by mold geometry and resin flow. Orientation of the fiber reinforcement can be used with long fiber- reinforced bulk molding compounds to enhance performance in molded parts. Effect of chop length on properties of compression molded composite materials Table 3 Effect of chop...
Abstract
Molding compounds are plastic materials in varying stages of pellets or granulation that consist of resin, filler, pigments, reinforcement, plasticizers, and other ingredients ready for use in a molding operation. This article describes the material components and physical properties of sheet molding compounds (SMC). The three types of resin paste mixing techniques, such as batch, batch/continuous, and continuous, for an SMC operation are reviewed. The article discusses the design features and functional operations of the two types of SMC machines, namely, continuous-belt and beltless machines. It explains the formulation and processing of bulk molding compounds and reviews molding methods for bulk molding compounds, including compression, transfer, and injection molding. The effects of the fiber type and length and the matrix type on thermoset bulk molding compounds are discussed. It describes the four injection molding processes of injection molding compounds such as feeding, transporting, injecting, and flowing.
Book Chapter
Function and Properties Factors in Plastics Processing Selection
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006935
EISBN: 978-1-62708-395-9
.... The high pressures used in such processes as injection molding can both reduce some of the effects of shrinkage, by packing out the mold, and cause distortion of the product, by increasing internal stresses. With glass-fiber-reinforced materials, shrinkage of the resin away from the surface during molding...
Abstract
Manufacturing process selection is a critical step in plastic product design. The article provides an overview of the functional requirements that a part must fulfil before process selection is attempted. A brief discussion on the effects of individual thermoplastic and thermosetting processes on plastic parts and the material properties is presented. The article presents process effects on molecular orientation. It also illustrates the thinking that goes into the selection of processes for size, shape, and design factors. Finally, the article describes how various processes handle reinforcement.
Book Chapter
Properties and Performance of Polymer-Matrix Composites
Available to PurchaseBook: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003447
EISBN: 978-1-62708-195-5
...</xref>, and <xref rid="a0003447-ref11" ref-type="bibr">11)</xref> Three polyester resin systems—aromatic copolymers, polybutylene terephthalate (PBT), and polyethylene terephthalate (PET)—are used to describe the family of properties of thermoplastic polyester resins ( Table 3 , Fig. 7 to 14 ). Short-length glass and carbon-fiber reinforcements...
Abstract
This article discusses the materials and properties of polymer-matrix composites to characterize each generic material according to its composition and method of manufacture. It contains a table that lists the key physical, mechanical, thermal, and electrical properties, and in-service conditions of concern for resin-matrix composites. Axes definitions, symbols, and special property calculations for composite material property tests are reviewed. The article provides an overview of the performance capabilities of selected polymer-matrix composite materials such as thermoplastic-matrix composites and thermoset-matrix composites. The thermoplastic-matrix composites include thermoplastic polyester resins and fiber resin composites; thermoplastic polyamide resins and fiber-resin composites; and thermoplastic polysulfone resins and fiber-resin composites.
Book Chapter
Forms and Properties of Composite Materials
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003032
EISBN: 978-1-62708-200-6
...)—are used to describe the family of properties of thermoplastic polyester resins ( Table 3 , Fig. 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 ). Short-length glass and carbon fiber reinforcements of up to 55% of the fiber-resin composite are used to improve or alter the properties in molding compounds...
Abstract
The design and analysis of aerospace and industrial composite components and assemblies requires a detailed knowledge of materials properties, which, in turn, depend on the manufacturing, machining, and assembly methods used. This article, through several tables and graphs, provides the mechanical properties, physical properties, and service characteristics of representative composite fiber-resin combinations, including thermoplastic matrix composites such as thermoplastic polyester resins, thermoplastic polyamide resins, and thermoplastic polysulfone resins, and thermoset matrix composites such as thermoset polyester resins, thermoset phenolic resins, thermoset epoxy resins, thermoset polyimide resins, and thermoset bismaleimide resins.
Book Chapter
Compression Molding and Stamping
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003019
EISBN: 978-1-62708-200-6
... and charge pattern, compression molding may involve regions of high resin flow that tend to orient fibers in the flow direction. Random orientation is desirable for chopped-fiber sheet molding compound and long-fiber thermoplastic materials. If directional fibers are desired, flow patterns can be developed...
Abstract
The compression molding process is most commonly called the sheet molding compound (SMC) process in reference to the precursor sheet molding compound material it uses. This article discusses the types of materials used for sheet manufacture, and describes the manufacturing and processing parameters of SMC components, providing details on tooling and process advantages and limitations. The article provides a general overview of the types of compression molding processes, including structural compression molding and thermoplastic compression molding.
Book Chapter
Joining and Assembly of Polymer-Matrix Composites
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003043
EISBN: 978-1-62708-200-6
... by the relative brittleness of fiber-reinforced composites. Yielding of ductile metals usually reduces the stress concentrations around bolt holes so that there is only a loss of area, with no stress concentration at ultimate load on the remaining (net) section at the joints. With composites, however...
Abstract
The structural efficiency of a composite structure is established by its joints and assembly. Adhesive bonding, mechanical fastening, and fusion bonding are three types of joining methods for polymer-matrix composites. This article provides information on surface treatment and the applications of adhesive bonding. It discusses the types of adhesives, namely, epoxy adhesives, epoxy-phenolic adhesives, condensation-reaction PI adhesives, addition-reaction PI adhesives, bismaleimide adhesives, and structural adhesives. The article provides information on fastener selection considerations, including corrosion compatibility, fastener materials and strength, head configurations, importance of clamp-up, interference fit fasteners, lightning strike protection, blind fastening, and sensitivity to hole quality. Types of fusion bonding are presented, namely, thermal welding, friction welding, electromagnetic welding, and polymer-coated material welding.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003368
EISBN: 978-1-62708-195-5
... Abstract This article provides information on the thermoplastic resins used as matrix materials for continuous fiber reinforced composites. It focuses on the materials that are suitable for fabrication of structural laminates and used for aerospace applications. The article provides...
Abstract
This article provides information on the thermoplastic resins used as matrix materials for continuous fiber reinforced composites. It focuses on the materials that are suitable for fabrication of structural laminates and used for aerospace applications. The article provides a discussion on the background, categories, characteristics, product forms, properties, cost benefits, and processing techniques of thermoplastic resins. Strategies that have been advanced to deal with impregnation difficulties are also discussed.
Book Chapter
Recycling and Disposal of Polymer-Matrix Composites
Available to PurchaseBook: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003471
EISBN: 978-1-62708-195-5
... Thermoplastic-matrix fiber-reinforced composites have several potential advantages over thermoset-matrix composites. Toughness and damage resistance are among these properties. Because of the fundamental ability of thermoplastics to be reshaped upon heating, there are, at least potentially, some recycling...
Abstract
This article begins with a discussion on the driving forces for recycling composites. It reviews the recycling process of thermoset-matrix composites and thermoplastic-matrix composites. The recycling of thermoset-matrix composites includes regrind, chemical, energy recovery, and thermal processes. Thermoplastic-matrix composites are recycled by regrinding, compounding/blending and reprocessing. The article concludes with discussion on the properties of recycled composite fibers.
Book Chapter
Introduction to Manufacturing of Polymer-Matrix Composites
Available to PurchaseBook: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003401
EISBN: 978-1-62708-195-5
...- or at least long fiber-reinforced) polymer composites. The intention of the articles is to explain the key features of each technique and provide the reader with sufficient insight to allow selection of a technically and economically feasible manufacturing technique for a composite design. With product...
Abstract
This article explains the key features of the manufacturing techniques for polymer composites. It describes the selection of a technically and economically feasible manufacturing technique for a composite design. The article discusses widely accepted and emerging techniques to manufacture polymer composites such as open-mold techniques.
Book Chapter
Introduction—Composite Materials and Optical Microscopy
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009071
EISBN: 978-1-62708-177-1
... of matrices is that they are reactive (thermosets) and nonreactive (thermoplastics) polymers. Most thermoplastic-matrix composites are developed with their polymerization complete. As a result, thermoplastic fiber-reinforced composites are generally more difficult to produce due to high viscosity resulting...
Abstract
This article illustrates the polymer matrices used for composite materials. It describes the use of prepeg materials in manufacturing high-performance composites. The article discusses the various infusion processes for the development of fiber-reinforced composites, namely, resin transfer molding, vacuum-assisted resin transfer molding, and resin film infusion. It explains the composite- and matrix-toughening methods for fiber-reinforced composites, such as dispersed-phase toughening and interlayer toughening. The article concludes with information on optical microscopy, which provides an insight into the micro- and macrostructure of fiber-reinforced composites.
Book Chapter
Processing and Joining of Thermoplastic Composites
Available to PurchaseBook: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003425
EISBN: 978-1-62708-195-5
... (i.e., use temperatures greater than 105 °C, or 220 °F, enhanced environmental resistance or improved damage tolerance) than TS materials can deliver. In response, various combinations of high-performance thermoplastic (TP) matrix resins ( Table 1 ) and continuous fiber reinforcements ( Table 2 ) have...
Abstract
Advanced thermoplastic composites possess impact resistance, fracture toughness, and elevated temperature endurance properties due to their melt-fusible nature. This article presents the material options available for thermoplastic composites such as pseudothermoplastics, post-impregnated thermoplastics, and true thermoplastics. It describes the processing methods of thermoplastic composites, including weaving, seaming, autoclaving, preconsolidation, roll consolidation, roll forming/pultruding, thermoforming, press forming, hydroforming, and diaphragm forming. The article provides information on different types of joints, namely, fastened, adhesive bonded, dual polymer bonded, co-consolidated, and welded joints. It explains the joining methods of thermoplastic composites, such as press forming, diaphragm forming, autoclaving, ultrasonic welding, resistance welding, and induction welding.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006925
EISBN: 978-1-62708-395-9
... techniques are used to produce polymer fibers. Such fibers have substantially greater stiffness and strength along their length than do the unoriented polymers from which they are manufactured. This is because special processing has been used to orient the covalent bonds of an appropriate long-chain polymer...
Abstract
This introductory article describes the various aspects of chemical structure that are important to an understanding of polymer properties and thus their eventual effect on the end-use performance of engineering plastics. The polymers covered include hydrocarbon polymers, carbon-chain polymers, heterochain polymers, and polymers containing aromatic rings. The article also includes some general information on the classification and naming of polymers and plastics. The most important properties of polymers, namely, thermal, mechanical, chemical, electrical, and optical properties, and the most significant influences of structure on those properties are then discussed. A variety of engineering thermoplastics, including some that are regarded as high-performance thermoplastics, are covered in this article. In addition, a few examples of commodity thermoplastics and biodegradable thermoplastics are presented for comparison. Finally, the properties and applications of six common thermosets are briefly considered.
Book Chapter
Resin Transfer Molding and Structural Reaction Injection Molding
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003020
EISBN: 978-1-62708-200-6
... area. Because the reinforcement does not move during the molding process, it can be more effectively located in liquid molding than in either compression molding or thermoplastic stamping, both of which involve flow. Choice of fiber type is not limited by the process. Glass, carbon, aramid...
Abstract
Resin transfer molding (RTM) and structural reaction injection molding (SRIM) are two similar processes that are well suited to the manufacture of large, complex, and high-performance structures. This article discusses the similarities and differences of RTM and SRIM processes and the unique design considerations with respect to the physical properties, geometry, surface quality, process economics, equipment, and tooling of a component that should be considered in choosing RTM or SRIM over other competing processes for fabricating reinforced components.
Book Chapter
Advanced Thermoplastics
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003009
EISBN: 978-1-62708-200-6
... are flexible thermoplastics that can be melt processed at comparatively low temperatures. To obtain the higher stiffness levels needed for many engineering-plastics applications, the ionomers can be reinforced with glass fibers, and other polymers can be added to increase heat-deflection temperature...
Abstract
Advanced thermoplastics are stiff, moldable plastics that compete with traditional engineering thermoplastics and thermosets owing to their good tensile, compressive, impact, and shear strength, electrical properties, and corrosion resistance. This article discusses commercial forms, family characteristics, properties and applications of the following advanced thermoplastics: homopolymer and copolymer acetals, fluoropolymers, ionomers, polyamides, polyamide-imides, polyarylates, polyketones, polyaryl sulfones, polybutylene terephthalates, polycarbonates, polyether-imides, polyether sulfones, polyethylene terephthalates, thermoplastic polyimides, liquid crystal polymers, polyphenylene ether blends, polyphenylene sulfides, and polysulfones.
Book Chapter
Introduction to Polymer-Matrix Composites
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003031
EISBN: 978-1-62708-200-6
... if the matrix is a thermoplastic. The reinforcing fibers and matrix resins can also be combined into many different nonfinal material or product forms that are designed for subsequent use with specific fabrication processes. In the case of continuous fibers, these combinations of unidirectional fiber ribbons...
Abstract
This article discusses the types, properties, and uses of continuous-fiber-reinforced composites, including glass, carbon, aramid, boron, continuous silicon carbide, and aluminum oxide fiber composites. While polyester and vinyl ester resins are the most used matrix materials for commercial applications, epoxy resins, bismaleimide resins, polyimide resins, and thermoplastic resins are used for aerospace applications. The article addresses design considerations as well as product forms and fabrication processes.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003441
EISBN: 978-1-62708-195-5
... requires specific information about the chemical and physical nature of the material. Impact Strength Some of these tests assume special importance and even criticality for fiber- reinforced thermoplastics. For instance, the consideration of impact strength is significant in advanced composite...
Abstract
This article describes the most significant tests to characterize the properties of constituent materials. It discusses the chemical, physical, and mechanical tests for determining the properties of reinforcement fibers and fabrics. The article provides information on some of the basic materials used for thermoset and thermoplastic resin matrices. It reviews the identification of the individual characteristics of thermoset and thermoplastic resin along with the test methods normally used for their determination. The article contains a table that lists properties and tests for uncured and cured thermoset-matrix resins and prepregs.
Book Chapter
Sheet Molding Compounds
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003035
EISBN: 978-1-62708-200-6
... Abstract Sheet molding compounds (SMCs) refers to both material and process for producing glass-fiber-reinforced polyester resin items. This article discusses the material components incorporated into the resin paste for desirable processing and molding characteristics and optimum physical...
Abstract
Sheet molding compounds (SMCs) refers to both material and process for producing glass-fiber-reinforced polyester resin items. This article discusses the material components incorporated into the resin paste for desirable processing and molding characteristics and optimum physical and mechanical properties, including catalyst, fillers, thickeners, pigments, thermoplastic polymers, flame retardants, and ultraviolet absorbers. It talks about the mixing techniques available for SMC resin pastes, including batch, batch/continuous, and continuous mixing. The article also outlines the design features and the operations of continuous-belt and beltless machine type SMCs.
1