Skip Nav Destination
Close Modal
By
Richard C. Sutherlin, Ronald A. Graham
By
Warren J. Haws
By
Ockert J. Van Der Schijff, Noah Budiansky, Ronald M. Latanision
By
Herbert S. Jennings
By
Rodney R. Boyer
By
Michel Rigaud
By
Mark Eisenmann, Richard Morgan
By
Bernard S. Covino, Jr., Stephen D. Cramer
By
William R. Warke
By
Philippe Marcus
By
Hira S. Ahluwalia, Ramgopal Thodla
Search Results for
liquid-metal corrosion
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1380
Search Results for liquid-metal corrosion
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003610
EISBN: 978-1-62708-182-5
... Abstract This article provides information on the liquid lithium systems that are exposed to liquid metal. It discusses the forms in which liquid-metal corrosion is manifested. The influence of several key factors on the corrosion of metals and alloys by liquid-metal systems or liquid-vapor...
Abstract
This article provides information on the liquid lithium systems that are exposed to liquid metal. It discusses the forms in which liquid-metal corrosion is manifested. The influence of several key factors on the corrosion of metals and alloys by liquid-metal systems or liquid-vapor metal coolants is described. Some information on safety precautions for handling liquid metals, operating circulating systems, dealing with fire and spillage, and cleaning contaminated components, are also provided.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003594
EISBN: 978-1-62708-182-5
... Abstract This article examines a type of corrosion that occurs when solids (primarily metals) are exposed to liquid metal environments. It describes the principle mechanisms of liquid metal corrosion, including dissolution, impurity and interstitial reactions, alloying, and compound reduction...
Abstract
This article examines a type of corrosion that occurs when solids (primarily metals) are exposed to liquid metal environments. It describes the principle mechanisms of liquid metal corrosion, including dissolution, impurity and interstitial reactions, alloying, and compound reduction. It also provides guidelines for materials selection and alloy development based on liquid metal corrosion reactions.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003632
EISBN: 978-1-62708-182-5
... Abstract This article discusses the fundamental aspects of environmentally induced cracking. It provides a theoretical basis for the evaluation, testing, and methods of protection against the cracking. The article describes the mechanisms of corrosion that produce cracking of metals...
Abstract
This article discusses the fundamental aspects of environmentally induced cracking. It provides a theoretical basis for the evaluation, testing, and methods of protection against the cracking. The article describes the mechanisms of corrosion that produce cracking of metals and intermetallic compounds as a result of exposure to their environment.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003645
EISBN: 978-1-62708-182-5
... accelerated test for such metals as aluminum alloys and others that develop concentrated attack at the liquid line (or splash zone in certain equipment). In certain alloy-environment systems, the vapor phase is more corrosive than the liquid phase. Intermittent Immersion The term intermittent...
Abstract
Immersion testing is the most frequently conducted test for evaluating corrosion of metals in aqueous solutions. This article focuses on the basic factors that are considered in different conditions of immersion testing. These factors are solution composition, temperature, aeration, volume, velocity, and waterline effects; specimen surface preparation; method of immersion of specimens; duration of test; and method of cleaning specimens. The article discusses the different conditions of immersion testing, namely, full immersion condition, high temperature condition, partial immersion and vapor phase condition, and alternate immersion condition. It concludes with a checklist of items that should be included in a standard report of immersion tests.
Book Chapter
Corrosion of Niobium and Niobium Alloys
Available to PurchaseBook: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003824
EISBN: 978-1-62708-183-2
... Abstract For chemical processing, niobium resists a wide variety of corrosive environments, including mineral acids, many organic acids, liquid metals, and most salt solutions. This article focuses on the mechanisms of corrosion resistance of niobium alloys in these environments. The niobium...
Abstract
For chemical processing, niobium resists a wide variety of corrosive environments, including mineral acids, many organic acids, liquid metals, and most salt solutions. This article focuses on the mechanisms of corrosion resistance of niobium alloys in these environments. The niobium alloys include Nb-1Zr, Nb-55Ti, Nb-50Ta, and Nb-40Ta. The article describes the use of these corrosion resistant niobium alloys, and provides information on applications of niobium in various industries.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003568
EISBN: 978-1-62708-180-1
... increases the rate of attack due to mechanical wear and corrosion, the attack is called erosion-corrosion . It is encountered when particles in a liquid impinge on a metal surface, causing the removal of protective surface films, such as air-formed protective oxide films or adherent corrosion products...
Abstract
Erosion occurs as the result of a number of different mechanisms, depending on the composition, size, and shape of the eroding particles; their velocity and angle of impact; and the composition of the surface being eroded. This article describes the erosion of ductile and brittle materials with the aid of models and equations. It presents three examples of erosive wear failures, namely, abrasive erosion, erosion-corrosion, and cavitation erosion.
Book Chapter
Corrosion of Beryllium and Aluminum-Beryllium Composites
Available to PurchaseBook: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003827
EISBN: 978-1-62708-183-2
... exposure of beryllium that has been studied includes gaseous and liquid metal corrosion. High-Temperature Gas Oxidation The oxidation of beryllium exposed to gases at high temperature has been studied for applications in gas-cooled reactor systems ( Ref 28 , Ref 29 , Ref 30 , Ref 31 , Ref 32...
Abstract
This article describes the four major conditions that can cause beryllium to corrode in air. These include beryllium carbide particles exposed at the surface; surface contaminated with halide, sulfate, or nitrate ions; surface contaminated with other electrolyte fluids; and atmosphere that contains halide, sulfate, or nitrate ions. The article provides information on the behavior of beryllium under the combined effects of high-purity water environment, stress and chemical environment, and high-temperature environment. The compositions of the structural grades for intentionally controlled elements and major impurities are tabulated. The article discusses the in-process problems and procedures that are common but avoidable when processing beryllium and aluminum-beryllium composites. It also describes the types of coatings used on beryllium and aluminum-beryllium. These include chemical conversion coatings, anodized coatings, plated coatings, organic coatings, and plasma-sprayed coatings.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003577
EISBN: 978-1-62708-182-5
... of a knowledge-based design of corrosion resistant alloys and to the prediction of the long-term behavior of metallic materials in corrosive environments. Two major areas are usually distinguished in the corrosion of metals and alloys. The first area is where the metal or alloy is exposed to a liquid...
Abstract
This article provides a summary of the concepts discussed in the articles under the Section “Fundamentals of Corrosion” in ASM Handbook, Volume 13A: Corrosion: Fundamentals, Testing, and Protection. In this section, the thermodynamic aspects of corrosion are descried first followed by a group of articles discussing the fundamentals of aqueous corrosion kinetics. The fundamentals of gaseous corrosion are addressed next. The fundamental electrochemical reactions of corrosion and their uses are finally described.
Book Chapter
Liquid-Metal- and Solid-Metal-Induced Embrittlement
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006786
EISBN: 978-1-62708-295-2
... to be a prerequisite for this type of LMIE in all observed cases. Type 4: High-temperature corrosion of a solid metal by a liquid metal causes embrittlement, which is an entirely different problem from types 1 to 3. For the purposes of this Volume, this article summarizes some of the characteristics...
Abstract
Metal-induced embrittlement is a phenomenon in which the ductility or the fracture stress of a solid metal is reduced by surface contact with another metal in either the liquid or solid form. This article summarizes some of the characteristics of liquid-metal- and solid-metal-induced embrittlement. This phenomenon shares many of these characteristics with other modes of environmentally induced cracking, such as hydrogen embrittlement and stress-corrosion cracking. The discussion covers the occurrence, failure analysis, and service failures of the embrittlement. The article also briefly reviews some commercial alloy systems in which liquid-metal-induced embrittlement or solid-metal-induced embrittlement has been documented and describes some examples of cracking due to these phenomena, either in manufacturing or in service.
Book Chapter
Corrosion by Hydrogen Fluoride and Hydrofluoric Acid
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004182
EISBN: 978-1-62708-184-9
... at 60 °C (140 °F); vapor phase purged with nitrogen Metal Corrosion rate in various acid concentrations 50% 65% 70% Liquid Vapor Liquid Vapor Liquid Vapor mm/yr mils/yr mm/yr mils/yr mm/yr mils/yr mm/yr mils/yr mm/yr mils/yr mm/yr mils/yr Platinum nil nil nil...
Abstract
This article provides the corrosion data for materials in hydrofluoric acid (HF) and anhydrous hydrogen fluoride (AHF). These materials include carbon and low-alloy steels, austenitic stainless steels, nickel-rich austenitic stainless steels, nickel and nickel-base alloys, copper alloys, precious metals, and non-metals. The article also discusses the hydrogen blistering and stress-corrosion cracking of carbon steels in high-temperature HF and AHF.
Book Chapter
Corrosion Resistance of Titanium and Titanium Alloys
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003142
EISBN: 978-1-62708-199-3
... and liquid metal embrittlement. A short section discusses the addition of alloys that can improve the corrosion resistance of titanium. cavitation corrosion resistance crack propagation crevice corrosion erosion-corrosion galvanic corrosion hot salt corrosion stress corrosion cracking titanium...
Abstract
This article discusses corrosion resistance of titanium and titanium alloys to different types of corrosion, including galvanic corrosion, crevice corrosion, stress-corrosion cracking (SCC), erosion-corrosion, cavitation, hot salt corrosion, accelerated crack propagation, and solid and liquid metal embrittlement. A short section discusses the addition of alloys that can improve the corrosion resistance of titanium.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003635
EISBN: 978-1-62708-182-5
..., brazing, soldering, and welding ( Ref 14 , 15 , 16 , 17 ) operations. Embrittlement of steel occurs by electroplated or dipped cadmium, zinc, or tin—all of which provide corrosion resistance. In liquid metal cooled reactors, liquid lithium can cause LMIE in metals. Fig. 6 Influence...
Abstract
Liquid metal induced embrittlement (LMIE) is the reduction of the fracture resistance of a solid material during exposure to a liquid metal. This article discusses the mechanisms and occurrence condition of LMIE and describes the effects of metallurgical factors, such as grain size, temperature and strain rate, stress, inert carriers, and fatigue, on LMIE. It provides a detailed discussion on LMIE in ferrous and nonferrous metals and their alloys. In addition, the article highlights the ways of preventing embrittlement in metals and alloys.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006795
EISBN: 978-1-62708-295-2
... a more erosion-resistant metal. Erosion-Corrosion When movement of a corrodent over a metal surface increases the rate of attack due to mechanical wear and corrosion, the attack is called erosion-corrosion. It is encountered when particles in a liquid impinge on a metal surface, causing...
Abstract
Erosion is the progressive loss of original material from a solid surface due to mechanical interaction between that surface and a fluid, a multicomponent fluid, an impinging liquid, or impinging solid particles. The detrimental effects of erosion have caused problems in a number of industries. This article describes the processes involved in erosion of ductile materials, brittle materials, and elastomers. Some examples of erosive wear failures are given on abrasive erosion, liquid impingement erosion, cavitation, and erosion-corrosion. In addition, the article provides information on the selection of materials for applications in which erosive wear failures can occur.
Book Chapter
Corrosion Failures of Industrial Refractories and Technical Ceramics
Available to PurchaseBook: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 31 January 2025
DOI: 10.31399/asm.hb.v13b.a0007042
EISBN: 978-1-62708-183-2
... and other pyrometallurgical processes for different molten slags, liquid metals, and gas atmospheres, considering linear variation of refractories and reacting media. More microstructural-based corrosion models should be developed in the future to quantitatively describe and predict the corrosion...
Abstract
This article provides a discussion on the corrosion of industrial refractory materials and technical ceramics. These materials, which are used to minimize heat losses and provide a barrier between the vessel and its contents, are utilized in the metallurgical, chemical process, power generation, automotive, and aerospace industries. The article covers the fundamental principles of chemical corrosion of refractories and ceramics, and the use of thermodynamic calculations and kinetic models to evaluate the probability of the occurrence of corrosion-causing chemical reactions. It describes the corrosion resistance characteristics of specific classes of refractories and structural ceramics. The article also examines the prevention strategies that minimize corrosion failures of both classes of materials.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001812
EISBN: 978-1-62708-180-1
...-corrosion cracking, hydrogen embrittlement, and liquid-metal embrittlement of bolts and nuts. The article explains the most commonly used protective metal coatings for ferrous metal fasteners. Zinc, cadmium, and aluminum are commonly used for such coatings. The article also illustrates the performance...
Abstract
This article discusses different types of mechanical fasteners, including threaded fasteners, rivets, blind fasteners, pin fasteners, special-purpose fasteners, and fasteners used with composite materials. It describes the origins and causes of fastener failures and with illustrative examples. Fatigue fracture in threaded fasteners and fretting in bolted machine parts are also discussed. The article provides a description of the different types of corrosion, such as atmospheric corrosion and liquid-immersion corrosion, in threaded fasteners. It also provides information on stress-corrosion cracking, hydrogen embrittlement, and liquid-metal embrittlement of bolts and nuts. The article explains the most commonly used protective metal coatings for ferrous metal fasteners. Zinc, cadmium, and aluminum are commonly used for such coatings. The article also illustrates the performance of the fasteners at elevated temperatures and concludes with a discussion on fastener failures in composites.
Book Chapter
Porous Powder Metallurgy Technology
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006134
EISBN: 978-1-62708-175-7
... ). Porous ceramics are utilized in applications that require higher-temperature service or more extreme corrosion resistance than porous metals can provide. However, porous ceramics are limited in their application because they have substantially lower mechanical properties than metals and because...
Abstract
The technology to fabricate lower-density, porous powdered metal materials provides unique engineering solutions for many applications. This article summarizes the characteristics and applications of porous powder metallurgy technology, as well as the fabrication methods employed.
Book Chapter
Introduction to Forms of Corrosion
Available to PurchaseSeries: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003603
EISBN: 978-1-62708-182-5
... processes include many corrosion phenomena that are encountered in the practice of corrosion engineering and corrosion science. The majority of those phenomena deal with either aqueous or gaseous corrosion, although there are concerns about materials for use in molten salt and liquid metal environments...
Abstract
Corrosion is classified into two categories: corrosion that is not influenced by any other process and corrosion that is influenced by another process such as the presence of stresses or erosion. This article discusses uniform corrosion, localized corrosion, metallurgically influenced corrosion, and microbiologically influenced corrosion, which fit under the classification of corrosion that is not influenced by any outside process. It also explains mechanically assisted degradation and environmentally induced cracking, which fit under the classification of corrosion that is influenced by an outside process.
Book Chapter
Liquid Metal and Solid Metal Induced Embrittlement
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003554
EISBN: 978-1-62708-180-1
... causes the solid metal to eventually disintegrate. Stress does not appear to be a prerequisite for this type of LMIE in all observed cases. Type 4: High-temperature corrosion of a solid metal by a liquid metal causes embrittlement, which is an entirely different problem from types 1 to 3...
Abstract
Metal-induced embrittlement is a phenomenon in which the ductility or fracture stress of a solid metal is reduced by surface contact with another metal in either liquid or solid form. This article summarizes the characteristics of solid metal induced embrittlement (SMIE) and liquid metal induced embrittlement (LMIE). It describes the unique features that assist in arriving at a clear conclusion whether SMIE or LMIE is the most probable cause of the problem. The article briefly reviews some commercial alloy systems where LMIE or SMIE has been documented. It also provides some examples of cracking due to these phenomena, either in manufacturing or in service.
Book Chapter
Introduction to Fundamentals of Corrosion Thermodynamics
Available to PurchaseSeries: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003715
EISBN: 978-1-62708-182-5
... into a nonmetallic state. The products of corrosion may be dissolved species or solid corrosion products. Because electrochemical reactions are at the origin of corrosion, the corroding metal surface is considered an electrode. The ionically conducting liquid is the electrolyte in which the reactions take place...
Abstract
This article provides a discussion on the fundamentals of corrosion thermodynamics. The discussion focuses on electrochemical reactions, molten salt corrosion thermodynamics, and geochemical modeling.
Book Chapter
Corrosion by Organic Solvents
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004188
EISBN: 978-1-62708-184-9
... to considered and controlled. A review by Brossia et al. ( Ref 5 ) discusses the important variables and parameters that require consideration when testing in organic systems. Some of the important environmental variables that influence corrosion testing in organic liquids include: Metal, alloy...
Abstract
This article describes the classification of organic solvents, namely, aprotic and protic solvents and one-component and multi-component systems. It discusses the corrosion behavior in aprotic and protic solvents. The article contains a table that presents the relationship among solution conductivity, acidity, and the corrosion rates of type 304 stainless steel in protic and aprotic solvents. The article reviews important environmental variables that influence corrosion testing in organic liquids.
1