1-20 of 152 Search Results for

liquid-droplet erosion

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 30 August 2021
Fig. 16 Liquid droplet erosion from a low-pressure steam turbine blade that failed under fatigue loading. (a) Photograph of leading-edge airfoil, suction side. The lower portion of the airfoil (left) was 400-series stainless steel alloy; the upper portion of the airfoil (right) was clad More
Image
Published: 01 January 2002
Fig. 8 Early stage of liquid-droplet erosion of Stellite 6B More
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006796
EISBN: 978-1-62708-295-2
... Abstract Erosion of a solid surface can be brought about by liquid droplet impingement (LDI), which is defined as "progressive loss of original material from a solid surface due to continued exposure to erosion by liquid droplets." In this article, the emphasis is placed on the damage mechanism...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003570
EISBN: 978-1-62708-180-1
... through a carbon steel impeller in a pump Fig. 8 Early stage of liquid-droplet erosion of Stellite 6B Fig. 9 Joint area between Stellite 6B (top) and 12% Cr steel (bottom) of a steam turbine blade eroded by water droplets Fig. 10 Surface appearance at low magnification...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005734
EISBN: 978-1-62708-171-9
... There are four distinct forms of erosive wear: Dry solid particle erosion Liquid droplet erosion Cavitation erosion Slurry erosion Dry Solid Particle Erosion Dry solid particle erosion (also referred to as blast erosion) is caused by repetitive impingement of solid particles against...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001073
EISBN: 978-1-62708-162-7
... of hard practice volume fraction and overall hardness. Erosive Wear Four distinct forms of erosive wear have been identified: Solid-particle erosion Liquid-droplet erosion Cavitation erosion Slurry erosion Solid-particle erosion is caused by the impingement of small, solid...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006378
EISBN: 978-1-62708-192-4
... both impingement variables (velocity, impact angle, droplet size, and physical properties of liquids) and erosion resistance of materials, including the correlation between erosion resistance and mechanical properties and the effects of alloying elements and microstructure. The article also provides...
Image
Published: 31 December 2017
Fig. 1 Liquid impingement erosion on the leading edge of a blade, caused by droplets of rain. (a) Scanning electron microscopy image showing a section cut from an ex-service blade. (b) Optical profilometry image. Normally, such erosion does not impair the function of the blade. More
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003669
EISBN: 978-1-62708-182-5
... to erosion. Cavitation is caused by the formation and collapse of vapor bubbles in a liquid near a metal surface. Impingement refers to damage caused by liquid jets, droplets, or solid particles impacting a solid surface. Mechanical damage to metal surfaces removes protective films. These films can...
Image
Published: 15 January 2021
Fig. 10 Wet steam experimental apparatus for liquid droplet impingement (LDI) erosion test More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003569
EISBN: 978-1-62708-180-1
... Droplet or jet diameters also vary from about 0.1 to 5 mm (0.004 to 0.2 in.). Droplets can be generated by spray nozzles, vibrating hollow needles, or rotating disks with water fed onto their surface. The typical droplet or jet diameter and the volume of liquid impacting the specimen per unit time should...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006428
EISBN: 978-1-62708-192-4
... efficiency. Clearly the scale of the machines involved vary with the power generated. Wear related damage occurs through different modes, including fretting, impact, solid particle and liquid droplet erosion and high-speed rub between moving and stationary parts (see divisions Wear by Rolling, Sliding...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006795
EISBN: 978-1-62708-295-2
... damage. Some examples of erosive wear failures are given in the following sections on abrasive erosion, liquid impingement erosion, cavitation, and erosion-corrosion. Further discussion can be found in the articles “ Abrasive Wear Failures ,” “ Corrosive Wear Failures ,” and “ Liquid Droplet Impingement...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006824
EISBN: 978-1-62708-329-4
... (fuel and dilution air), and air/fuel flow rates, are determinants of the temperature distribution of combustion. Significant local temperature excursions have escaped detection by engine monitoring systems. For example, liquid hydrocarbon droplets in a gaseous fuel have been implicated in failures...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003568
EISBN: 978-1-62708-180-1
... this reduces the heat-transfer capability of the surface. An alternative method is the use of baffles to channel gas flow away from critical areas. Liquid Impingement Erosion Erosion can take place in a liquid medium even without the presence of solid abrasive particles in that medium. Liquid droplets...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004155
EISBN: 978-1-62708-184-9
... , 36 , 37 ). In addition, there is water droplet erosion of last rows of LP turbine blades ( Ref 2 , 3 , 6 , 29 , 38 ) and solid-particle erosion in the high-pressure and intermediate-pressure turbines and turbine valves caused by exfoliation of oxides in superheaters, reheaters, and steam piping...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005727
EISBN: 978-1-62708-171-9
... Excellent as a corrosion-resistant bond coat Service up to 850 °C (1560 °F) Can be postcoat heat treated for improved performance MCrAlY alloys (iron base) Fe 24Cr 8Al 0.5Y Gas atomized Very high oxidation and erosion resistance For water droplet erosion protection in steam turbines, high oxidation...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006789
EISBN: 978-1-62708-295-2
... machines; tillage tools; machine parts subjected to grinding operations; conveyors of mineral particles; sliding systems with hard particles in between Solid particle/droplet erosion Slurry pipelines; centrifugal pumps for slurry; turbine blades; nozzles for sand blasters Cavitation erosion Turbine...
Book Chapter

By Peter J. Blau
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003242
EISBN: 978-1-62708-199-3
... into erosive wear and cavitation wear (or cavitation erosion). Erosive wear involves the cumulative effects of many particles striking a surface. These particles can be solids, liquid droplets (e.g., rain), collapsing bubbles, or solid-liquid mixtures called slurries. Electric sparks can also cause erosion...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003631
EISBN: 978-1-62708-182-5
..., are detailed in Failure Analysis and Prevention, Volume 11 of ASM Handbook. Erosion Erosion can be defined as the removal of surface material by the action of numerous individual impacts of solid or liquid particles. Erosive wear should not be confused with abrasive or sliding wear, because...