Skip Nav Destination
Close Modal
By
Valery Rudnev, George E. Totten, Yulia Pleshivtseva, Lauralice C.F. Canale, Rosa L. Simencio Otero
Search Results for
liquid quenchants
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 134 Search Results for
liquid quenchants
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005814
EISBN: 978-1-62708-165-8
...-extraction characteristics of a liquid quenchant. It provides information on heat generated microstructural field evolution and information on the analysis and characterization of heat transfer boundary conditions. heat transfer liquid quenching microstructural evolution quenching heat transfer...
Abstract
This article describes the mechanisms and characteristics of heat transfer in the quenching of steel. This article describes the characterization of boiling heat transfer, including pool boiling, forced convective boiling, and rewetting, which plays a key role in defining the heat-extraction characteristics of a liquid quenchant. It provides information on heat generated microstructural field evolution and information on the analysis and characterization of heat transfer boundary conditions.
Image
Published: 01 August 2013
Fig. 2 Typical surface and center cooling curves indicating the different heat-transfer mechanisms (stages) from the hot metal to the cooler vaporizable liquid quenchant
More
Image
Published: 01 February 2024
Fig. 11 Typical surface and center cooling curves, indicating the different heat-transfer mechanisms (stages) from the hot metal to the cooler vaporizable liquid quenchant
More
Image
Published: 09 June 2014
Fig. 1 Stages of heat transfer during quenching. Stage A' is a relatively short (about 0.1 s), unimportant stage where bubbles initiate prior to the formation of a vapor blanket around the surface of the hot part in the liquid quenchant. Other stages for cooling conditions at the surface
More
Image
Published: 01 February 2024
Fig. 32 Surface heat-transfer coefficient, α, for spray quenching using plain water as a function of the surface temperature of a steel specimen and the water flow parameter, M (m 3 /(s ⋅ m 2 ). Parameter M represents the ratio of the amount of liquid quenchant, such as water (m 3 /s
More
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005789
EISBN: 978-1-62708-165-8
... coefficient initial heat-flux density liquid quenchants oil quenching polymer quenching quenching temperature gradient Laboratory Tests to Evaluate the Cooling Intensity of Liquid Quenchants This section includes discussion on probes for laboratory tests and resultant curves, the scope...
Abstract
This article provides a discussion on probes for laboratory tests and resultant curves of industrial quenching processes. It describes the scope of the tests, and the calculation of heat-transfer coefficient (HTC) based on the tests. The article highlights the differences between the laboratory tests and characterization of industrial quenching processes. It reviews the importance of initial heat-flux density and first critical heat-flux density. The theoretical principle behind and the purpose of the temperature gradient method are discussed. The article provides information on the design of the probe, heat-extraction dynamics, and influence of wetting kinematics. It also includes discussions on the simplified 1-D temperature-distribution model, calculation of the HTC, and the finite-volume method for the heat-conduction equation.
Book Chapter
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005944
EISBN: 978-1-62708-166-5
... Range of liquid 97.8–881.4 °C (208.04–1618.52 °F) Heat conductivity 80.6 W/m · K Density 898 kg/m 3 Specific heat 1.36 kJ/kg · K Viscosity 0.413 MPa · s Source: Ref 1 Narazaki and Ninomiya ( Ref 1 ) created cooling curves for several liquid quenchants using a cylindrical...
Abstract
The use of gases or molten salts as the quenchant for steel parts is commonly limited to the quenching of high-alloy steel or the carbonizing quenching of low-alloy steel. This article reviews the quenching process of steels with molten metals (quenchant) such as molten lead, molten bismuth, and molten sodium. It also contains tables that list the physical properties of lead, bismuth, sodium, and molten sodium.
Book Chapter
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007011
EISBN: 978-1-62708-450-5
...-based polymer solutions, petroleum-oil-based quenchants, vegetable oils, water mist, and gaseous quenchants, including forced air ( Ref 1 , 4 – 6 ). Because liquid quenchants are the most popular quenching media used with IH, this section focuses on liquid quenching technology, but some specifics...
Abstract
This article presents the fundamentals of induction hardening (IH). It focuses on liquid quenching technology, but some specifics and brief comments are provided regarding alternative quenching media as well. The article provides a discussion on the following quench modes that can be applied in IH using liquid media: conventional immersion quenching, open spray quenching, flood quenching, and submerged quench or submerged spray quench. It also focuses on four primary methods of IH: scan hardening, progressive hardening, single-shot hardening, and static hardening.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005824
EISBN: 978-1-62708-165-8
... Abstract This article provides an overview of common quenching media, the factors involved in the mechanism of quenching, and process variables, namely, surface condition, mass and section size of the workpiece, and flow rate of the quenching liquid. It describes the methods of quenchant...
Abstract
This article provides an overview of common quenching media, the factors involved in the mechanism of quenching, and process variables, namely, surface condition, mass and section size of the workpiece, and flow rate of the quenching liquid. It describes the methods of quenchant characterization using hardening-power and cooling-power tests. The article discusses the fundamentals involved in heat-transfer coefficient and heat flux of quenching processes. This discussion is followed by various actual examples of applications of these methods using simplified equations. Quenchant evaluation, classification, selection, and maintenance are reviewed in detail. The article addresses the various reasons for quench oil variability and complications due to aging and contamination.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005778
EISBN: 978-1-62708-165-8
... composition, and case depth, and presents examples that relate dimensional change to several shapes that vary in complexity. It also provides information on the quenchant removal and salt removal processes, lists the applications of liquid carburizing in cyanide baths, and discusses the process and importance...
Abstract
This article describes the uses of the liquid carburizing process carried out in low and high temperature cyanide-containing baths, and details the noncyanide liquid carburizing process which can be accomplished in a bath containing a special grade of carbon. It presents a simple formula for estimating total case depth, and illustrates the influence of carburizing temperature, duration of carburizing, quenching temperature, and quenching medium with the aid of typical hardness gradients. The article provides information on controlling of cyaniding time and temperature, bath composition, and case depth, and presents examples that relate dimensional change to several shapes that vary in complexity. It also provides information on the quenchant removal and salt removal processes, lists the applications of liquid carburizing in cyanide baths, and discusses the process and importance of cyanide waste disposal in detail.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005862
EISBN: 978-1-62708-167-2
... A' is a relatively short (about 0.1 s), unimportant stage where bubbles initiate prior to the formation of a vapor blanket around the surface of the hot part in the liquid quenchant. Other stages for cooling conditions at the surface are: Vapor stage (Stage A, or vapor blanket stage), boiling stage (Stage B...
Abstract
Induction heating for hardening of steels has advantages from the standpoint of quenching because parts are individually processed in a controlled manner. This article provides information on the effect of agitation, temperature, hardening, residual stresses, and quenching media, on quenching. It also describes various quenching methods for steel induction heat treating, namely, spray quenching, immersion quenching, self or mass quenching, and forced air quenching. The article also reviews quench system design and quenchants and their maintenance.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005436
EISBN: 978-1-62708-196-2
... comes in contact with the liquid quenchant, there are normally three stages of quenching: Vapor stage (stage A or vapor blanket stage) Boiling stage (stage B or nucleate boiling stage) Convection stage (stage C) An example showing the three stages of quenching is shown in Fig. 1...
Abstract
This article provides information on the various stages of quenching, sources of distortion, and factors that affect the creation of thermal gradients. It reviews the various determinations of heat-transfer coefficients by the thermal conductivity and diffusivity method, analytical and empirical methods, application of cooling curves, computational fluid dynamics, and the inverse conduction calculation and measurement of parts. Suitable examples are also provided.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005932
EISBN: 978-1-62708-166-5
... be specified. It is generally not possible to compare probes of different materials and tested to different methods. When a hot component comes into contact with the liquid quenchant, there normally are three stages of quenching ( Ref 3 ): Vapor (or vapor blanket) stage Boiling (or nucleate...
Abstract
This article describes various quenchants, namely, water and inorganic salt solutions, polymers (polyvinyl alcohol, polyalkylene glycol, polyethyl oxazoline, polyvinyl pyrrolidone and sodium polyacrylates), quench oils, and molten salts, which are used for heat treatment of ferrous alloys. It also provides information on the steps for controlling quenching performance for polymer quenchants and oils with an emphasis on measuring quenchant performance, safety measures, and oxidation.
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007001
EISBN: 978-1-62708-450-5
..., and the highest mechanical properties can be obtained. Thus, different cooling mediums can be used for steel hardening through heat treatment. Cooling Mediums Liquid mediums are commonly used as quenchants, including water, oils, and aqueous solutions (with the addition of polymers and salts). During...
Abstract
This article explains cooling mechanisms involving saltwater solutions used as quenchants. The analyses of cooling power include studies of cooling curves, heat-transfer coefficients, and cooling rates. The influence of other bath parameters, such as temperature and agitation, is also discussed. The article discusses solute additions and several factors impacting quenching.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006506
EISBN: 978-1-62708-207-5
... water immersion Boiling water Water spray Polyalkylene glycol solutions Air blast Still air Liquid nitrogen Fast quenching oils Brine solutions Hot or cold water and PAG quenchants are used almost exclusively in the quenching of aluminum alloys, and these quenchants...
Abstract
The fundamental objective of quenching is to preserve, as nearly as possible, a metastable solid solution formed at the solution heat treating temperature, by rapidly cooling to some lower temperature, usually near room temperature. This article provides an overview of the factors used to determine a suitable cooling rate and the appropriate quenching process to develop a suitable cooling rate. It discusses the three distinct stages of quenching: vapor stage, boiling stage, and convection stage. The article reviews the factors that affect the rate of cooling in production operations. It discusses the quenchants that are used in quenching aluminum alloys, namely, hot or cold water and polyalkylene glycol. The article also describes the racking practices for controlling distortion and the level of residual stresses induced during the quench.
Book Chapter
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005816
EISBN: 978-1-62708-165-8
... by the impingement of a quenchant medium on a hot metal surface. Some of these processes have obvious differences, while others are similar and differ only in degree. Examples include the addition of droplets of water (or other volatile liquids) to a gas quenching stream in fog quenching ( Ref 1 ); quenching...
Abstract
Spray quenching refers to a wide variety of quenching processes that involve heat removal facilitated by the impingement of a quenchant medium on a hot metal surface. This article provides information on the basic concepts of spray quenching, and discusses the most commonly used techniques in quench tank agitation to establish uniformity of the quenched part. Common techniques include quenchant stirring, quenchant circulation, and submerged jet/spray mixing. The article also describes the effect of quenching agitation and reviews heat-transfer characteristics of immersion quenching and spray quenching with water.
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0006998
EISBN: 978-1-62708-450-5
... of the discussion is on vaporizable liquid quenchants such as water, petroleum oil, and other aqueous media, it is applicable to other cooling media also. Several factors are involved in the mechanism of quenching: Internal conditions of the workpiece that affect the diffusion of heat to the surface...
Abstract
In this article, a metallurgical overview of the hardening process is provided. This overview is followed by the methodology involved in obtaining cooling curves, the currently accepted standardized methods of testing, and the use of newer methods of cooling curve data interpretation that describe the quenching process.
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.9781627084505
EISBN: 978-1-62708-450-5
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006260
EISBN: 978-1-62708-169-6
... glycol solutions Air blast Still air Liquid nitrogen Fast quenching oils Brine solutions Hot or cold water and PAG quenchants are used almost exclusively in the quenching of aluminum alloys, and these quenchants are discussed in separate sections of this article. Water is the fluid...
Abstract
Quenching refers to the rapid cooling of metal from the solution treating temperature, typically between 465 and 565 deg C (870 and 1050 deg F) for aluminum alloys. This article provides an overview on the appropriate quenching process and factors used to determine suitable cooling rate. It describes the quench sensitivity and severity of alloys, quench mechanisms and the different types of quenchants used in immersion, spray, and fog quenching. The article provides a detailed description of the quench-factor analysis that mainly includes residual stress and distortion, which can be controlled by proper racking. It concludes with information on agitation and the quench tank system used in the quenching of aluminum alloys.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005788
EISBN: 978-1-62708-165-8
... with conventional quenching practice. Chen and Zhou also state that delayed quenching can reduce residual stresses and distortion ( Ref 5 ). Liščić, Grubisic, and Totten have shown that the technique can be used to enhance resistance to both bending fatigue and impact ( Ref 6 ). Among the liquid quenchants...
Abstract
Inverse hardening a steel of adequate hardenability requires a workpiece of sufficiently large cross section, an appropriate cooling medium, and the right quenching conditions. This article explains the Temperature Gradient Quenching Analysis System (TGQAS), which can measure, record, and evaluate all quenching processes in common use, describing their heat extraction dynamics by corresponding thermodynamic functions. It discusses the metallurgical aspects of steels with an emphasis on two different processes, namely, heat extraction (a thermodynamic process) and microstructural transformation (a metallurgical process) that are initiated at the moment when the austenitized workpiece is immersed in the quenchant. The article describes the uses of polyalkylene glycol copolymer and the effect of hardness and fatigue resistance on AISI 4140 type steel.
1