Skip Nav Destination
Close Modal
Search Results for
liquid propane gas cylinder
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 67
Search Results for liquid propane gas cylinder
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1996
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002385
EISBN: 978-1-62708-193-1
... investigation. cryogenic pressure vessel failure analysis fracture mechanics gas transmission pipeline large fan liquid propane gas cylinder subcritical fracture mechanics FRACTURE MECHANICS has developed into a useful tool in the design of crack-tolerant structures and in fracture control...
Abstract
This article illustrates the role that fracture mechanics can play in failure analysis. It describes the important failure criteria as relations between design and materials factors, which are used to correlate fracture mechanics analysis to the observations of a failure analysis. Descriptions include an indication of how the factors are typically evaluated. The article also provides information on subcritical fracture mechanics. Finally, a group of failure analysis examples explain how fracture mechanics parameters can be determined and how they may be fitted into an overall failure investigation.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005758
EISBN: 978-1-62708-171-9
... is readily liquefied under elevated pressure due to –41 °C (–43 °F) boiling point. It is transported in liquid form in cylinders and tanks for greater density. Propane vaporizes into a clean-burning gas when released from its storage container. Typically, an identifying odor is added so that the gas can...
Abstract
This article provides members of the thermal spray community with practical recommendations for the safe installation, operation, and maintenance of gas equipment used in the thermal spray process. It focuses on safety issues concerning gas equipment used in conjunction with thermal spray equipment at consumer sites. The article covers the gas sources (bulk or gaseous), the piping (hard and soft) leading to the gas console or the torch, and the specific safety devices used to help ensure safe operation. It discusses the characteristics and safety hazards of gases such as oxygen, compressed air, nitrogen, helium, argon, carbon dioxide, hydrogen, acetylene, kerosene, propylene, propane, and natural gas. The article also provides information on the maintenance and safety practices involved in the plumbing configurations of cylinder gas supply units and bulk gas supply units.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001394
EISBN: 978-1-62708-173-3
... are frequently used for torch soldering because of the low heat requirements. The plumbing industry often utilizes a simple hand-held propane/air torch that is attached to the top of a small, rechargeable cylinder. Surrounding air is mixed with the propane from the cylinder in the appropriate ratio. Gas...
Abstract
Torch soldering utilizes a fuel gas flame as the heat source in the soldering process to produce a leak-tight assembly with some degree of mechanical strength. This article describes the advantages, limitations, and applications of torch soldering. It reviews the equipment used and the basic heating techniques required for the soldering.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001372
EISBN: 978-1-62708-173-3
... pressure. By dissolving acetylene in liquid acetone, a cylinder such as that shown in Fig. 1 can be used to store about 7.79 m 3 (275 scf) of acetylene under a pressure of 1.7 MPa (250 psi). This pressure must be reduced to 105 kPa (15 psi) or less by the regulator ( Fig. 1 ) before the gas enters...
Abstract
Oxyfuel gas welding (OFW) is a manual process in which the metal surfaces to be joined are melted progressively by heat from a gas flame, with or without a filler metal. This article discusses the capabilities, advantages, and limitations of OFW. It describes the role of gases, such as oxygen, acetylene, hydrogen, natural gas, propane, and proprietary gases, in OFW. The article discusses the important elements of an OFW system, such as gas storage facilities, pressure regulators, hoses, torches, related safety devices, and accessories. It describes the sequence for setting up a positive-pressure welding outfit. The article provides information on forehand welding and backhand welding, as well as various joints used. It concludes with a discussion on repairs and alterations, as well as the safety aspects.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001487
EISBN: 978-1-62708-173-3
... be explosive under some conditions. Fuel gases, such as acetylene or propane, are other common flammables often found in cutting and welding areas. Special attention should be given to fuel gas cylinders, hoses, and apparatus to prevent gas leakage. Combustibles that cannot be removed from the area...
Abstract
Safety is an important consideration in all welding, cutting, and related work. This article discusses the basic elements of safety general to all welding, cutting, and related processes. It includes safety procedures common to a variety of applications. The most important component of an effective safety and health program is management support and direction. The article reviews the role of management, training, housekeeping, and public demonstrations in welding safety to minimize personal injury and property damage. It provides information on the safety measures for eye and face protection in various welding and cutting operations. Injuries and fatalities from electric shock in welding and cutting operations can occur if proper precautionary measures are not followed. The article discusses the electrical safety aspects to be considered for various welding and cutting operations.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005807
EISBN: 978-1-62708-165-8
... temperature and rapid heating rates), satisfactory results can be obtained in spin hardening with natural gas, propane, or manufactured gas. The choice of gas depends on the shape, size, and composition of the workpiece and on the depth of case required, as well as on the relative cost and availability...
Abstract
Flame hardening is a heat treating process in which a thin surface shell of a steel part is heated rapidly to a temperature above the critical temperatures of the steel. The versatility of flame-hardening equipment and the wide range of heating conditions obtainable with gas burners, often permit flame hardening to be done by a variety of methods. These include the spot or stationary method, progressive method, spinning method, and the combination progressive-spinning method. This article provides information on fuel gases used in flame hardening and their selection criteria for specific applications. It also discusses operating procedures and control requirements for flame hardening of steel.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005635
EISBN: 978-1-62708-174-0
... and explosion. adhesive bonding arc welding brazing compressed gas cutting electrical safety electromagnetic radiation electron beam welding explosion prevention explosion protection explosion welding fire prevention fire protection friction welding fumes gas high-frequency welding laser...
Abstract
This article presents an overview of the rules, regulations, and techniques implemented to minimize the safety hazards associated with welding, cutting, and allied processes. Safety management, protection of the work area, process-specific safety considerations, and robotic and electrical safety are discussed. The article explains the use of personal protective equipment and provides information on protection against fumes, gases, and electromagnetic radiation. It concludes with a discussion on safe handling of compressed gases as well as the prevention and protection of fire and explosion.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005926
EISBN: 978-1-62708-166-5
...) Fundamentals of Gases Gas molecules are somewhat widely separated, and they move about unceasingly in the space in which they are contained. Gases differ from liquids in two respects; gases are highly compressible, and they fill any closed vessel in which they are placed. Gases resemble liquids...
Abstract
This article provides a detailed discussion on the types of furnace atmospheres required for heat treating. These include generated exothermic-based atmospheres, generated endothermic-based atmospheres, generated exothermic-endothermic-based atmospheres, generated dissociated-ammonia-based atmospheres, industrial gas nitrogen-base atmospheres, argon atmospheres, and hydrogen atmospheres. Atmospheres for backfilling, partial pressure operation, and quenching in vacuum are also discussed. Furnace atmospheres constitute four major groups of safety hazards in heat treating: fire, explosion, toxicity, and asphyxiation. The article reviews the fundamentals of principal gases and vapors. It describes how the evaluation of the atmospheric requirements of heat treating furnaces is influenced by factors such as cost of operation and capital investment.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003208
EISBN: 978-1-62708-199-3
... consists of compressed gas cylinders, gas pressure regulators, hoses, and a welding torch. Oxygen and fuel are stored in separate cylinders. The gas regulator attached to each cylinder, whether fuel gas or oxygen, controls the pressure at which the gas flows to the welding torch. At the torch, the gas...
Abstract
This article discusses the principles of operation, equipment needed, applications, and advantages and disadvantages of various fusion welding processes, namely, oxyfuel gas welding, electron beam welding, stud welding, laser beam welding, percussion welding, high-frequency welding, and thermite welding.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005175
EISBN: 978-1-62708-186-3
... and compositions of fuel types such as acetylene, natural gas, propane, propylene, and methyl-acetylene-propadiene-stabilized gas. The article describes the effects of OFC on base metal, including carbon and low-alloy steels, cast irons, and stainless steels. It provides information on light cutting, medium...
Abstract
Oxyfuel gas cutting (OFC) includes a group of cutting processes that use controlled chemical reactions to remove preheated metal by rapid oxidation in a stream of pure oxygen. This article discusses the operation principles and process capabilities of the OFC. It reviews the properties and compositions of fuel types such as acetylene, natural gas, propane, propylene, and methyl-acetylene-propadiene-stabilized gas. The article describes the effects of OFC on base metal, including carbon and low-alloy steels, cast irons, and stainless steels. It provides information on light cutting, medium cutting, heavy cutting, and stack cutting. The article informs that the basic oxyfuel method can be modified to allow gas cutting of metals, such as stainless steel and most nonferrous alloys, that resist continuous oxidation.
Book Chapter
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001483
EISBN: 978-1-62708-173-3
... the exothermic reaction. The simplest oxyfuel gas cutting equipment consists of two cylinders (one for oxygen and one for the fuel gas), gas flow regulators and gages, gas supply hoses, and a cutting torch with a set of exchangeable cutting tips. Such manually operated equipment is portable and inexpensive...
Abstract
Oxyfuel gas cutting (OFC) includes a group of cutting processes that use controlled chemical reactions to remove preheated metal by rapid oxidation in a stream of pure oxygen. This article provides a detailed discussion on the principles of operation and the process capabilities of OFC. In addition to providing information on the equipment used, the article describes the properties of fuel gases (acetylene, natural gas). It also presents an overview of the effect of OFC on base metal and explains the application of OFC in cutting thin, medium, and thick sections, bars, and structural and close-tolerance shapes.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006135
EISBN: 978-1-62708-175-7
... (68 °F) and 1 atmosphere Property Natural gas (CH 4 ) Ammonia vapor (a) Air Propane gas Methanol vapor (a) Nitrogen gas Hydrogen gas Specific gravity (b) 0.59 0.60 1.00 1.55 1.11 0.97 0.07 Gas density, kg/m 3 (lb/ft 3 ) 0.72 (0.045) 0.74 (0.046) 1.20 (0.075) 1.91...
Abstract
Sintering atmosphere protects metal parts from the effects of contact with air and provides sufficient conduction and convection for uniform heat transfer to ensure even heating or cooling within various furnace sections, such as preparation, sintering, initial cooling, and final cooling sections. This article provides information on the different zones of these furnace sections. It describes the types of atmospheres used in sintering, namely, endothermic gas, exothermic gas, dissociated ammonia, hydrogen, and vacuum. The article concludes with a discussion on the furnace zoning concept and the problems that arise when these atmospheres are not controlled.
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.9781627081719
EISBN: 978-1-62708-171-9
Book Chapter
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005759
EISBN: 978-1-62708-171-9
... to increase the safety awareness and the use of safety practices for gas and liquid piping and electrical equipment within thermal spray installations. construction materials dust dust collector ergonomics piping system piping system integrity monitoring preventive maintenance safety interlocks...
Abstract
This article discusses the safety issues associated with the design and operation of thermal spray booths and spray box structures and the equipment or systems required for operating thermal spray processes. It describes the design elements necessary to mitigate sound, dust and fume, ultraviolet light, and mechanical hazards. The means selected for safeguarding personnel must be based on a formal risk assessment that meets ANSI/RIA standards. The safeguards include sensing devices, barriers, awareness signals, procedures, and training. It also provides guidelines that are intended to increase the safety awareness and the use of safety practices for gas and liquid piping and electrical equipment within thermal spray installations.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005955
EISBN: 978-1-62708-166-5
... pounds to 70 tons, and heated working chambers range in size from 0.03 m 3 (1 ft 3 ) to hundreds of cubic feet. Most vacuum furnaces are batch-type installations, but some are continuous furnaces that have multiple zones for purging, preheating, high-temperature processing, and gas or liquid quenching...
Abstract
Vacuum heat treating consists of thermally treating metals and alloys in cylindrical steel chambers that have been pumped down to less than normal atmospheric pressure. This article provides a detailed account of the operations and designs of vacuum furnaces, discussing their pressure levels, resistance heating elements, quenching systems, work load support, pumping systems, and temperature control systems. It describes the classification of instruments used for measuring and recording pressure inside a vacuum processing chamber. Common devices include hydrostatic measuring devices and devices for measuring thermal and electrical conductivity. The article also describes the applications of the vacuum heat treating process, namely, vacuum nitriding and vacuum carburizing. Finally, it reviews the heat treating process of tool steels, stainless steels, Inconel 718, and titanium and its alloys.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002488
EISBN: 978-1-62708-194-8
... whenever changes are made to a previously qualified, nonstandard weld joint design. In recent years, the use of narrow-gap gas-metal arc welding and submerged arc welding techniques in the place of conventional welding techniques for welding thick-section pressure vessel steels has contributed...
Abstract
This article explains how to design a joint or conduct a joining process so that components can be produced most efficiently and without defects. The joining processes include mechanical fastening, adhesive bonding, welding, brazing, and soldering. The article discusses the selection and application of good design practices based on the understanding of process-related manufacturing aspects such as accessibility, quality, productivity, and overall manufacturing cost. It provides several examples of selected parts and joining processes to illustrate the advantages of a specific design practice in improving manufacturability.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005552
EISBN: 978-1-62708-174-0
... + 2 H 2 O + Δ H ( enthalpy ) During primary combustion of the C 2 H 2 contained in a pressurized cylinder (as a liquefied compressed gas) by oxygen contained in a pressurized cylinder (as a compressed gas), ΔH = 227 kJ/mol of heat is released during the dissociation of the C...
Abstract
This article overviews the classification of welding processes and the key process embodiments for joining by various fusion welding processes: fusion welding with chemical sources for heating; fusion welding with electrical energy sources, such as arc welding or resistance welding; and fusion welding with directed energy sources, such as laser welding, electron beam welding. The article reviews the different types of nonfusion welding processes, regardless of the particular energy source, which is usually mechanical but can be chemical, and related subprocesses of brazing and soldering.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005956
EISBN: 978-1-62708-166-5
... donator that today typically is of a gaseous kind. Basically two carbon donators are applied in current industrial applications. Carbon monoxide is the carbon donator during pack cementation, salt bath carburization, and controlled gas carburization. The other ones are hydrocarbons such as propane...
Abstract
The process of case hardening of steel includes three consecutive steps of heat treatment: heating; the thermochemical process with the enrichment of the surface area during the carburizing or carbonitriding stage with carbon and nitrogen; and the subsequent quenching process for hardening. This article provides a model-based description of the development of residual stresses during case hardening. It also describes the influence and effects of residual stresses and distortion in hardening, carburizing, and nitriding processes of the steel.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005762
EISBN: 978-1-62708-165-8
... in a salt bath (i.e., similar to liquid cyaniding) or in a furnace gas atmosphere cyaniding. Because of problems in disposing of cyanide-bearing wastes, gas carbonitriding is now often preferred over liquid cyaniding. Key to controlling carbonitriding processes to obtain optimum case characteristics...
Abstract
Carbonitriding is a modified form of carburizing that involves the introduction and diffusion of atomic nitrogen into the surface steel during carburization. This article discusses the composition, depth, and hardenability of a carburized case, and demonstrates how to control atmosphere in batch and continuous furnaces. It discusses the most important considerations in the selection of carbonitriding temperature. The article also describes the processing factors for minimizing retained austenite in the carbonitrided case. Hardness testing and carbonitriding of powder metallurgy parts, quenching and tempering of carbonitrided steel parts, and applications of carbonitriding are also covered in the article.
1