Skip Nav Destination
Close Modal
Search Results for
liquid impact erosion
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 385 Search Results for
liquid impact erosion
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003570
EISBN: 978-1-62708-180-1
... induced by formation and subsequent collapse of voids or cavities within the liquid, and from high-velocity impacts between a solid surface and liquid droplets. The former process is called cavitation erosion and the latter is liquid-droplet erosion. This article emphasizes on manifestations of damage...
Abstract
Erosion of solid surfaces can be brought about solely by liquids in two ways: from damage induced by formation and subsequent collapse of voids or cavities within the liquid, and from high-velocity impacts between a solid surface and liquid droplets. The former process is called cavitation erosion and the latter is liquid-droplet erosion. This article emphasizes on manifestations of damage and ways to minimize or repair these types of liquid impact damage, with illustrations.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006378
EISBN: 978-1-62708-192-4
... Abstract Liquid impingement erosion has been defined as progressive loss of original material from a solid surface due to continued exposure to impacts by liquid drops or jets. This article focuses on the core nature of erosion by liquid impingement, due to the greater appreciation...
Abstract
Liquid impingement erosion has been defined as progressive loss of original material from a solid surface due to continued exposure to impacts by liquid drops or jets. This article focuses on the core nature of erosion by liquid impingement, due to the greater appreciation of the distinctions between the different forms of erosion. It discusses steam turbine blade erosion, aircraft rain erosion, and rain erosion of wind turbine blades. The article describes the mechanisms of liquid impact erosion and time dependence of erosion rate. It reviews critical empirical observations regarding both impingement variables (velocity, impact angle, droplet size, and physical properties of liquids) and erosion resistance of materials, including the correlation between erosion resistance and mechanical properties and the effects of alloying elements and microstructure. The article also provides information on the ways to combat erosion.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006796
EISBN: 978-1-62708-295-2
... of the liquid, c is the shock wave velocity in the liquid, and V is the impact velocity of the droplet ( Ref 1 ). This theoretical impact pressure of LDI is well reproduced in numerical studies. Therefore, numerical studies are becoming a powerful tool in predicting the detailed mechanism of LDI erosion...
Abstract
Erosion of a solid surface can be brought about by liquid droplet impingement (LDI), which is defined as "progressive loss of original material from a solid surface due to continued exposure to erosion by liquid droplets." In this article, the emphasis is placed on the damage mechanism of LDI erosion under the influence of a liquid film and surface roughness and on the prediction of LDI erosion. The fundamentals of LDI and processes involved in initiation of erosion are also discussed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003568
EISBN: 978-1-62708-180-1
.... These include cavitation erosion, liquid impingement erosion, and solid particle erosion. Cavitation erosion is due to the formation and collapse, within a liquid, of cavities or bubbles that contain vapor or gas or both. Liquid impingement erosion is due to impacts by liquid drops or jets. Solid impingement...
Abstract
Erosion occurs as the result of a number of different mechanisms, depending on the composition, size, and shape of the eroding particles; their velocity and angle of impact; and the composition of the surface being eroded. This article describes the erosion of ductile and brittle materials with the aid of models and equations. It presents three examples of erosive wear failures, namely, abrasive erosion, erosion-corrosion, and cavitation erosion.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006795
EISBN: 978-1-62708-295-2
... erosion. Cavitation erosion is due to the formation and collapse, within a liquid, of cavities or bubbles that contain vapor or gas or both. Liquid impingement erosion is due to impacts by liquid drops or jets. Solid impingement erosion is due to impacts by solid particles. Impingement also connotes...
Abstract
Erosion is the progressive loss of original material from a solid surface due to mechanical interaction between that surface and a fluid, a multicomponent fluid, an impinging liquid, or impinging solid particles. The detrimental effects of erosion have caused problems in a number of industries. This article describes the processes involved in erosion of ductile materials, brittle materials, and elastomers. Some examples of erosive wear failures are given on abrasive erosion, liquid impingement erosion, cavitation, and erosion-corrosion. In addition, the article provides information on the selection of materials for applications in which erosive wear failures can occur.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003669
EISBN: 978-1-62708-182-5
... to erosion. Cavitation is caused by the formation and collapse of vapor bubbles in a liquid near a metal surface. Impingement refers to damage caused by liquid jets, droplets, or solid particles impacting a solid surface. Mechanical damage to metal surfaces removes protective films. These films can...
Abstract
Erosion, cavitation, and impingement are mechanically assisted forms of material degradation that often contribute to corrosive wear. This article identifies and describes several tests that are useful for ranking the service potential of candidate materials under such conditions. The tests, designed by ASTM as G32, G73, G75, and G76, define specimen preparation, test conditions, procedures, and data interpretation. The article examines the relative influence of various test parameters on the incubation and intensity of cavitation, including temperature, pressure, flow velocity, and vibration dynamics. It concludes with a discussion on data correlations and the relationship between laboratory results and service expectations.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003569
EISBN: 978-1-62708-180-1
.... After the microjet impact, liquid flow on the solid surface could also have some effect on material removal. This is the reason why some surface-crack formation observed could not be attributed only to microjet impact on the solid surface ( Ref 2 , 3 , 4 , 5 , 6 , 7 , 8 ). Cavitation Erosion...
Abstract
This article considers two mechanisms of cavitation failure: those for ductile materials and those for brittle materials. It examines the different stages of cavitation erosion. The article explains various cavitation failures including cavitation in bearings, centrifugal pumps, and gearboxes. It provides information on the cavitation resistance of materials and other prevention parameters. The article describes two American Society for Testing and Materials (ASTM) standards for the evaluation of erosion and cavitation, namely, ASTM Standard G 32 and ASTM Standard G 73. It concludes with a discussion on correlations between laboratory results and service.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003631
EISBN: 978-1-62708-182-5
..., are detailed in Failure Analysis and Prevention, Volume 11 of ASM Handbook. Erosion Erosion can be defined as the removal of surface material by the action of numerous individual impacts of solid or liquid particles. Erosive wear should not be confused with abrasive or sliding wear, because...
Abstract
Mechanically assisted degradation of metals is defined as any type of degradation that involves a corrosion mechanism and a wear or fatigue mechanism. This article provides a discussion on the mechanisms of five forms of degradation: erosion, fretting corrosion, fretting fatigue, cavitation and water drop impingement, and corrosion fatigue. It describes the factors affecting the severity of fretting corrosion. The article also illustrates the relationship between corrosion fatigue and stress-corrosion cracking.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006384
EISBN: 978-1-62708-192-4
... coatings. Fig. 19 Influence of the elasticity of the wall on the impact pressure of a high-speed liquid jet The fluid-structure interaction in cavitation erosion can also be approached numerically by coupling a fluid dynamics code to a solid mechanics code. Up to now, the coupling has been...
Abstract
This article provides an overview of cavitation erosion with a specific focus on the estimation of mass loss. It describes the mechanisms of cavitation erosion and the types of laboratory devices to evaluate the resistance to cavitation erosion of materials. The laboratory devices include rotating disks, vibratory devices, cavitating liquid jets, and high-speed cavitation tunnels. The article discusses materials selection and surface protection to prevent cavitation erosion. It reviews the fluid-structure interaction that plays a role in cavitation erosion particularly for compliant materials. The article provides information on the numerical prediction of cavitation erosion damage by the finite element method (FEM).
Image
Published: 01 January 2002
Fig. 8 Processes by which a material is damaged by liquid impingement erosion. (a) Solid surface showing initial impact of a drop of liquid that produces circumferential cracks in the area of impact or produces shallow craters in very ductile materials. (b) High-velocity radial flow of liquid
More
Image
Published: 15 January 2021
Fig. 8 Processes by which a material is damaged by liquid impingement erosion. (a) Solid surface showing initial impact of a drop of liquid that produces circumferential cracks in the area of impact or produces shallow craters in very ductile materials. (b) High-velocity radial flow of liquid
More
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005734
EISBN: 978-1-62708-171-9
... are caused by mechanical shock emanating from the surface and propagating into the coating and/or the substrate. Liquid Droplet Erosion Liquid droplet erosion is caused by a shock wave that is induced by liquid droplet impact. This is a common occurrence for steam or water turbine blades or buckets...
Abstract
The use of thermal spray coatings to restore worn surfaces has provided a significant improvement in surface performance due to improved wear resistance. This article discusses the general use of thermal spray coatings in reducing predominant types of wear, namely, abrasive wear, erosive wear, adhesive wear, and surface fatigue.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003560
EISBN: 978-1-62708-180-1
... surfaces. Adhesive wear, the type of wear that occurs between two mutually soluble materials, is also discussed, as is erosive wear, liquid impingement, and cavitation wear. The article also presents a procedure for failure analysis and provides a number of detailed examples, including jaw-type rock...
Abstract
Wear, a form of surface deterioration, is a factor in a majority of component failures. This article is primarily concerned with abrasive wear mechanisms such as plastic deformation, cutting, and fragmentation which, at their core, stem from a difference in hardness between contacting surfaces. Adhesive wear, the type of wear that occurs between two mutually soluble materials, is also discussed, as is erosive wear, liquid impingement, and cavitation wear. The article also presents a procedure for failure analysis and provides a number of detailed examples, including jaw-type rock crusher wear, electronic circuit board drill wear, grinding plate wear failure analysis, impact wear of disk cutters, and identification of abrasive wear modes in martensitic steels.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006433
EISBN: 978-1-62708-192-4
... Abstract Solid particle erosion (SPE) is the loss of material that results from repeated impact of solid particles energized in a carrier fluid. This article reviews important SPE variables, their effects for different classes of materials, composites and coatings, and the mechanisms...
Abstract
Solid particle erosion (SPE) is the loss of material that results from repeated impact of solid particles energized in a carrier fluid. This article reviews important SPE variables, their effects for different classes of materials, composites and coatings, and the mechanisms and theories proposed to explain SPE. It discusses the SPE of metals, steels, and ceramics, as well as erosion of alloys with coarse, nominally two-phase microstructures in which the second-phase particles (SPPs) are typically large compared with the dimensions of the damage zone created by the impact of one particle. The article summarizes the erosion characteristics of polymer matrix composites (PMCs), metal matrix composites (MMCs), ceramic matrix composites (CMCs), and erosion-resistant coatings. The combination of parameters included in most erosion models is also summarized.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003284
EISBN: 978-1-62708-176-4
... D.R. , Walley S.M. , and Field J.E. , Solid Particle Erosion Studies in the Cavendish Laboratory, Paper 36 , Proc. 6th Int. Conf. on Erosion by Liquid and Solid Impact , Cavendish Laboratory, Cambridge, UK , 1983 11. Shipway P.H. and Hutchings I.M. , Influence...
Abstract
This article addresses the important variables in erosion, such as particle impact velocity; particle impact angle; particle size, shape, and material; and ambient temperature. It describes four erosion test methods: the gas-blast method, a method using a centrifugal accelerator test rig, the wind-tunnel test, and the whirling arm test. The article also details the various test methods used to measure impact velocity of particle and data analysis and interpretation of these four methods.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003630
EISBN: 978-1-62708-182-5
..., is not fully understood. The impact of gases, liquids, solids, or a combination thereof onto a surface can result in erosive wear. The study of the erosion of ductile metals ( Ref 17 , 18 , 19 ) is more advanced than that of brittle materials ( Ref 20 ). Kosel ( Ref 21 ) produced a review of solid-particle...
Abstract
This article provides a discussion on the mechanisms of wear and their interactions with gaseous corrosion. The wear mechanisms include abrasive, erosive, fretting, and sliding. The measurement of degradation on combustion walls in coal-fired boilers is discussed. The article concludes with information on the common coating techniques used for wear-corrosion control.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003242
EISBN: 978-1-62708-199-3
... into erosive wear and cavitation wear (or cavitation erosion). Erosive wear involves the cumulative effects of many particles striking a surface. These particles can be solids, liquid droplets (e.g., rain), collapsing bubbles, or solid-liquid mixtures called slurries. Electric sparks can also cause erosion...
Abstract
Wear is mechanically-induced surface damage that results in the progressive removal of material. Because different types of wear occur in machinery, many different types of wear tests have been developed to evaluate its effects on materials and surface treatments. This article provides an explanation on mechanisms, forms (sliding, impact, and rolling) and the causes of wear. It describes the wear measuring methods, including the mass loss method, wear width method, and scar depth method. The units used to report wear vary with type of wear and with the purpose for which the data are to be used. Listing the considerations of tribosystem analysis, the article provides information on selection of ASTM wear test methods grouped by wear type. The article concludes by tabulating the testing geometries and parameters that are commonly controlled and reported when conducting wear tests.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003567
EISBN: 978-1-62708-180-1
... Power-generation plants use processes that occur without any particles present and involve only the transport of solutions or steam. In these cases, liquid forces on the solid surface, which are due to turbulence or droplet impacts, mechanically remove protective layers of corrosion products, thus...
Abstract
This article focuses on the corrosion-wear synergism in aqueous slurry and grinding environments. It describes the effects of environmental factors on corrosive wear and provides information on the impact and three-body abrasive-corrosive wear. The article also discusses the various means for combating corrosive wear, namely, materials selection, surface treatments, and handling-environment modifications.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006428
EISBN: 978-1-62708-192-4
... efficiency. Clearly the scale of the machines involved vary with the power generated. Wear related damage occurs through different modes, including fretting, impact, solid particle and liquid droplet erosion and high-speed rub between moving and stationary parts (see divisions Wear by Rolling, Sliding...
Abstract
This article illustrates typical wear and friction issues encountered in gas and steam turbines and their consequences as well as commonly adopted materials solutions. It contains tables that present the summary of wear and friction related issues encountered in steam turbines and gas turbines. The article outlines the differences in the operating conditions and the nature of the components involved in gas and steam turbines. It discusses the constraints and applicable coating solutions for wear and friction issues, and concludes with a broad set of challenges that need to be addressed to improve performance and operability of gas and steam turbines.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001073
EISBN: 978-1-62708-162-7
... of hard practice volume fraction and overall hardness. Erosive Wear Four distinct forms of erosive wear have been identified: Solid-particle erosion Liquid-droplet erosion Cavitation erosion Slurry erosion Solid-particle erosion is caused by the impingement of small, solid...
Abstract
This article provides a general overview of physical and mechanical properties, alloy compositions, applications, and product forms of cobalt-base alloys as wear-resistant, corrosion-resistant, and/or heat-resistant materials. The discussion is largely focused on cobalt-base alloys for wear resistance, as this is the single largest application area of cobalt-base alloys.
1