Skip Nav Destination
Close Modal
Search Results for
liquid carburizing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 410 Search Results for
liquid carburizing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005778
EISBN: 978-1-62708-165-8
... Abstract This article describes the uses of the liquid carburizing process carried out in low and high temperature cyanide-containing baths, and details the noncyanide liquid carburizing process which can be accomplished in a bath containing a special grade of carbon. It presents a simple...
Abstract
This article describes the uses of the liquid carburizing process carried out in low and high temperature cyanide-containing baths, and details the noncyanide liquid carburizing process which can be accomplished in a bath containing a special grade of carbon. It presents a simple formula for estimating total case depth, and illustrates the influence of carburizing temperature, duration of carburizing, quenching temperature, and quenching medium with the aid of typical hardness gradients. The article provides information on controlling of cyaniding time and temperature, bath composition, and case depth, and presents examples that relate dimensional change to several shapes that vary in complexity. It also provides information on the quenchant removal and salt removal processes, lists the applications of liquid carburizing in cyanide baths, and discusses the process and importance of cyanide waste disposal in detail.
Image
Published: 01 August 2013
Fig. 1 Carbon gradients produced by liquid carburizing of carbon and alloy steels in low-temperature and high-temperature baths. The 1020 carbon steel bars were carburized at 845, 870, and 955 °C (1550, 1600, and 1750 °F) for the periods shown. The data on 3312 alloy steel show the effect
More
Image
Published: 30 September 2014
Image
Published: 30 September 2014
Fig. 8 Metal pot, immersed-electrode salt bath furnace for liquid carburizing, cyaniding, and carbonate baths—see table for standard sizes Typical standard sizes Temperature range Working dimensions Input, kW Heating capacity (A) Length (B) Width (C) Depth °C °F mm
More
Image
Published: 01 December 1998
Fig. 5 Carbon gradients produced by liquid carburizing of carbon and alloy steels. Carbon gradients produced by liquid carburizing carbon and alloy steels in low-temperature and high-temperature baths. The 1020 carbon steel bars were carburized at 845, 870, and 955 °C (1550, 1600, and 1750 °F
More
Image
Published: 01 December 1998
Image
Published: 01 August 2013
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005811
EISBN: 978-1-62708-165-8
... the steel. This article introduces the fundamentals, types, advantages and limitations, and the complications of various forms of carburizing, namely, pack carburizing, liquid carburizing or salt bath carburizing, gas carburizing, and low-pressure (vacuum) carburizing. The related process of carbonitriding...
Abstract
Carburization is the process of intentionally increasing the carbon content of a steel surface so that a hardened case can be produced by martensitic transformation during quenching. Like carburizing, carbonitriding involves heating above the upper critical temperature to austenitize the steel. This article introduces the fundamentals, types, advantages and limitations, and the complications of various forms of carburizing, namely, pack carburizing, liquid carburizing or salt bath carburizing, gas carburizing, and low-pressure (vacuum) carburizing. The related process of carbonitriding is also briefly described in the article.
Image
Published: 01 August 2013
Fig. 8 Comparative case-depth and case-hardness data obtained for liquid carburizing process-control specimens made of three steels. (a) Data are for 11 mm diam by 6.4 mm (0.4375 in. diam by 0.25 in.) specimens carburized 2 h at 855 °C (1575 °F), brine quenched and tempered at 150 °C (300 °F
More
Image
Published: 01 August 2013
Fig. 10 Dimensional data relating selected low-alloy steel production parts before and after liquid carburizing and hardening. AC, air cooled; OQ, oil quenched
More
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003197
EISBN: 978-1-62708-199-3
..., carbon and hardness gradients, and process procedures of different types of case hardening methods: carburizing (gas, pack, liquid, vacuum, and plasma), nitriding (gas, liquid, plasma), carbonitriding, cyaniding and ferritic nitrocarburizing. An accurate and repeatable method of measuring case depth...
Abstract
Case hardening is defined as a process by which a ferrous material is hardened in such a manner that the surface layer, known as the case, becomes substantially harder than the remaining material, known as the core. This article discusses the equipment required, process variables, carbon and hardness gradients, and process procedures of different types of case hardening methods: carburizing (gas, pack, liquid, vacuum, and plasma), nitriding (gas, liquid, plasma), carbonitriding, cyaniding and ferritic nitrocarburizing. An accurate and repeatable method of measuring case depth is essential for quality control of the case hardening process and for evaluation of workpieces for conformance with specifications. The article also discusses various case depth measurement methods, including chemical, mechanical, visual, and nondestructive methods.
Book Chapter
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005765
EISBN: 978-1-62708-165-8
... around those areas of a part that are not to be carburized. Advantages and Disadvantages Pack carburizing is no longer a major commercial process. This has been mainly due to replacement by more controllable and less labor-intensive gas and liquid carburizing processes. However, any labor cost...
Abstract
Pack carburizing is a process in which carbon monoxide derived from a solid compound decomposes at the metal surface into nascent carbon and carbon dioxide. In addition to discussing the pros and cons of pack carburizing, this article provides information on the carburizing medium, compounds, furnaces, and containers used in pack carburizing. The successful operation of the pack carburizing process depends on the control of principal variables such as carbon potential, temperature, time, case depth, and steel composition. The three types of furnaces most commonly used for pack carburizing are the box, car-bottom, and pit types. Carburizing containers are made of carbon steel, aluminum-coated carbon steel, or iron-nickel-chromium heat-resisting alloys. The article also provides information on the packing procedure of workpieces.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003198
EISBN: 978-1-62708-199-3
... directly on the hearth but sometimes may be placed on a tray. Salt Bath Equipment SALT BATHS are used in a wide variety of commercial heat treating operations, including cyaniding, liquid carburizing, liquid nitriding, austempering, martempering, and tempering applications. Salt bath equipment...
Abstract
Batch furnaces and continuous furnaces are commonly used in heat treating. This article provides a detailed account of various heat treating equipment and its furnace types, including salt bath equipment (externally heated, immersed-electrode and submerged-electrode furnaces), and fluidized-bed equipment (external-resistance-heated fluidized beds). It describes various auxiliary equipment used in cold-wall furnaces, namely, heating elements and pumping systems. Five types of heat-resistant alloys are used for furnace parts, trays, and fixtures: Fe-Cr alloys, Fe-Cr-Ni alloys, Fe-Ni-Cr alloys, nickel-base alloys and cobalt-base alloys. The article lists the recommended applications for alloys for parts and fixtures for various types of heat treating furnaces.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005929
EISBN: 978-1-62708-166-5
... carburizing, liquid nitriding, austempering, martempering (marquench and tempering), reheating, and other operations. Molten salt baths have a number of unique process advantages including efficient furnaces for heating and more rapid heating rates and more uniform temperature control. Molten salts also...
Abstract
This article provides information on the salt baths used for a variety of heat treatments, including heating, quenching, interrupted quenching (austempering and martempering), case hardening, and tempering. It describes two general types of salt bath systems for steel hardening: the first type uses atmosphere austenitizing followed by salt quench and the second type employs austenitizing salt baths with rapid transfer to the quench salt. The article provides a detailed account on the construction, advantages and disadvantages, and limitations of isothermal quenching furnaces, submerged-electrode furnaces, immersed-electrode furnaces, and externally heated furnaces. It discusses the important applications of various furnace designs, including the austempering of ductile iron, the hardening of tool steels, and the isothermal annealing of high-alloy steels.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003611
EISBN: 978-1-62708-182-5
... the various forms of high-temperature gaseous corrosion, namely, high-temperature oxidation, sulfidation, carburization, corrosion by hydrogen, and hot corrosion. oxidizing gas corrosion liquid electrolyte high-temperature gaseous corrosion high-temperature oxidation sulfidation carburization...
Abstract
When metal is exposed to an oxidizing gas at elevated temperature, corrosion can occur by direct reaction with the gas, without the need for the presence of a liquid electrolyte. This type of corrosion is referred to as high-temperature gaseous corrosion. This article describes the various forms of high-temperature gaseous corrosion, namely, high-temperature oxidation, sulfidation, carburization, corrosion by hydrogen, and hot corrosion.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005926
EISBN: 978-1-62708-166-5
...) Fundamentals of Gases Gas molecules are somewhat widely separated, and they move about unceasingly in the space in which they are contained. Gases differ from liquids in two respects; gases are highly compressible, and they fill any closed vessel in which they are placed. Gases resemble liquids...
Abstract
This article provides a detailed discussion on the types of furnace atmospheres required for heat treating. These include generated exothermic-based atmospheres, generated endothermic-based atmospheres, generated exothermic-endothermic-based atmospheres, generated dissociated-ammonia-based atmospheres, industrial gas nitrogen-base atmospheres, argon atmospheres, and hydrogen atmospheres. Atmospheres for backfilling, partial pressure operation, and quenching in vacuum are also discussed. Furnace atmospheres constitute four major groups of safety hazards in heat treating: fire, explosion, toxicity, and asphyxiation. The article reviews the fundamentals of principal gases and vapors. It describes how the evaluation of the atmospheric requirements of heat treating furnaces is influenced by factors such as cost of operation and capital investment.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005939
EISBN: 978-1-62708-168-9
... Abstract Low-temperature carburization hardens the surface of austenitic stainless steels through the diffusion of interstitial carbon without the formation of carbides. This article provides an overview on austenitic stainless steels and low-temperature carburization. It reviews the competing...
Abstract
Low-temperature carburization hardens the surface of austenitic stainless steels through the diffusion of interstitial carbon without the formation of carbides. This article provides an overview on austenitic stainless steels and low-temperature carburization. It reviews the competing technologies and commercial application of low-temperature carburization. The article discusses several processing parameters, including activation of the surface, proper surface preparation, selection and condition of the alloy to be carburized, treatment temperature, and carburizing atmosphere for successful low-temperature carburization of austenitic stainless steels and other chromium-containing alloys. It describes the performance properties of the low-temperature carburized layer: fatigue resistance, wear resistance, erosion resistance, and corrosion resistance.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005802
EISBN: 978-1-62708-165-8
... transformation and thermal changes occur throughout the part at approximately the same time. Martempering also reduces or eliminates susceptibility to cracking. Another advantage of martempering in molten salt is the control of surface carburizing or decarburizing. When the austenitizing bath is neutral salt...
Abstract
This article describes the advantages of martempering and the use of oil and salt as quenchants in the martempering process. It also discusses safety precautions to be followed by an operator and reviews the steels that are suitable for martempering. The article provides information on the importance of controlling process variables in martempering, including austenitizing temperature, temperature of the martempering bath, time in the bath, salt contamination, water additions to salt, agitation, and the rate of cooling from the martempering bath. It also describes specific situations in which distortion problems have been encountered during martempering. The article contains tables that indicate typical applications of martempering in salt and oil by listing commonly treated steel parts and giving details of martempering procedures and hardness requirements. The article also lists equipment requirements for oil and salt martempering of steel.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005771
EISBN: 978-1-62708-165-8
... case than carburizing; gas control critical Liquid (cyaniding) Diffused carbon and nitrogen 760–870 1400–1600 2.5–125 μm (0.1–5 mils) 50–65 (a) Low-carbon steels Good for thin cases on noncritical parts; batch process; salt disposal problems Ferritic nitrocarburizing Diffused carbon...
Abstract
Surface hardening improves the wear resistance of steel parts. This article focuses exclusively on the methods that involve surface and subsurface modification without any intentional buildup or increase in part dimensions. These include diffusion methods, such as carburizing, nitriding, carbonitriding, and austenitic and ferritic nitrocarburizing, as well as selective-hardening methods, such as laser transformation hardening, electron beam hardening, ion implantation, selective carburizing, and surface hardening with arc lamps. The article also discusses the factors affecting the choice of these surface-hardening methods.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005955
EISBN: 978-1-62708-166-5
... and devices for measuring thermal and electrical conductivity. The article also describes the applications of the vacuum heat treating process, namely, vacuum nitriding and vacuum carburizing. Finally, it reviews the heat treating process of tool steels, stainless steels, Inconel 718, and titanium and its...
Abstract
Vacuum heat treating consists of thermally treating metals and alloys in cylindrical steel chambers that have been pumped down to less than normal atmospheric pressure. This article provides a detailed account of the operations and designs of vacuum furnaces, discussing their pressure levels, resistance heating elements, quenching systems, work load support, pumping systems, and temperature control systems. It describes the classification of instruments used for measuring and recording pressure inside a vacuum processing chamber. Common devices include hydrostatic measuring devices and devices for measuring thermal and electrical conductivity. The article also describes the applications of the vacuum heat treating process, namely, vacuum nitriding and vacuum carburizing. Finally, it reviews the heat treating process of tool steels, stainless steels, Inconel 718, and titanium and its alloys.
1