Skip Nav Destination
Close Modal
Search Results for
liquation cracking
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 92 Search Results for
liquation cracking
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 June 2024
Fig. 4 Fracture surface of heat-affected zone liquation cracking in a welded Haynes 282 alloy, showing evidence of liquation (small, round features; green arrows). Reprinted from Ref 5 under Licensee MDPI, Basel, Switzerland, © 2019 by the authors. Open-access article distributed under
More
Image
Published: 01 June 2024
Fig. 5 Weld metal liquation cracking in an austenitic stainless steel weld. In this cross-sectional image, the dashed black line indicates the fusion line. Courtesy of Perlego. Source: Ref 6
More
Image
Published: 01 November 2010
Fig. 14 Schematic diagram to illustrate the mechanism of liquation cracking in full-penetration aluminum welds. PMZ, partially melted zone. Source: Ref 53
More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001410
EISBN: 978-1-62708-173-3
... behavior and microstructural evolution that dictate weld-metal ferrite content and morphology. The article describes weld defect formation, namely, solidification cracking, heat-affected zone liquation cracking, weld-metal liquation cracking, copper contamination cracking, ductility dip cracking, and weld...
Abstract
Austenitic stainless steels exhibit a single-phase, face-centered cubic structure that is maintained over a wide range of temperatures. This article reviews the compositions of standard and nonstandard austenitic stainless steels. It summarizes the important aspects of solidification behavior and microstructural evolution that dictate weld-metal ferrite content and morphology. The article describes weld defect formation, namely, solidification cracking, heat-affected zone liquation cracking, weld-metal liquation cracking, copper contamination cracking, ductility dip cracking, and weld porosity. It discusses four general types of corrosive attack: intergranular attack, stress-corrosion cracking, pitting and crevice corrosion, and microbiologically influenced corrosion. The article concludes with information on weld thermal treatments such as preheat and interpass heat treatments and postweld heat treatment.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001423
EISBN: 978-1-62708-173-3
... and carbides (heat-affected zone grain boundaries cracking), are also discussed. The article examines the parameters that affect heat-affected zone liquation cracking and presents a solution for each problem. carbides hardening nonferrous high-temperature materials physical metallurgy segregation...
Abstract
This article focuses on the physical metallurgy of nonferrous high-temperature materials that affects weldability on the precipitates used for age hardening (strain-age cracking). Those precipitates associated with solidification and solidification segregation, primarily Laves and carbides (heat-affected zone grain boundaries cracking), are also discussed. The article examines the parameters that affect heat-affected zone liquation cracking and presents a solution for each problem.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006582
EISBN: 978-1-62708-290-7
... cracking mechanisms in AM nickel-base superalloys, such as solid-solution-strengthened nickel-base superalloys and precipitate-strengthened nickel-base superalloys. The mechanisms include solidification cracking, strain-age cracking, liquation cracking, and ductility-dip cracking. The article also provides...
Abstract
This article covers the current state of materials development of nickel-base superalloys for additive manufacturing (AM) processes and the associated challenges. The discussion focuses on nickel-base superalloy fusion AM processes, providing information on typically encountered cracking mechanisms in AM nickel-base superalloys, such as solid-solution-strengthened nickel-base superalloys and precipitate-strengthened nickel-base superalloys. The mechanisms include solidification cracking, strain-age cracking, liquation cracking, and ductility-dip cracking. The article also provides a short discussion on binder jet AM and powder recyclability.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001417
EISBN: 978-1-62708-173-3
... created in the weld quality includes crack sensitivity, liquation cracking, porosity, and heat-affected zone degradation. The article provides an overview of filler alloy selection for reducing weld crack sensitivity and increasing weld strength, ductility, and corrosion resistance in the welds of heat...
Abstract
Aluminum alloys, particularly the heat-treatable alloys, are sensitive to weld cracking. Anticipation of these characteristics and general knowledge of these materials assist in selection of suitable method for welding heat-treatable aluminum alloys. This article provides a general description of the metallurgy, characteristics, and applications of heat-treatable aluminum alloys and a detailed discussion on the characteristics of heat-treatable aluminum alloys, their resulting impact on the weld quality and property, along with the methods of avoiding or reducing the impacts. The impact created in the weld quality includes crack sensitivity, liquation cracking, porosity, and heat-affected zone degradation. The article provides an overview of filler alloy selection for reducing weld crack sensitivity and increasing weld strength, ductility, and corrosion resistance in the welds of heat-treatable aluminum alloys.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006510
EISBN: 978-1-62708-207-5
..., and susceptibility to solidification cracking and liquation cracking. It provides an overview on welding processes, including gas metal arc welding, gas tungsten arc welding, resistance spot and seam welding, laser beam welding, and various solid-state welding processes. A review on joint design is also included...
Abstract
Weldability is a function of three major factors: base material quality, welding process, and design. This article focuses on base-metal weldability of aluminum alloys in terms of mechanical property degradation in both the weld region and heat-affected zone, weld porosity, and susceptibility to solidification cracking and liquation cracking. It provides an overview on welding processes, including gas metal arc welding, gas tungsten arc welding, resistance spot and seam welding, laser beam welding, and various solid-state welding processes. A review on joint design is also included, mainly in the general factors associated with service weldability (fitness). The article also provides a discussion on the selection and weldability of non-heat-treatable aluminum alloys, heat treatable aluminum alloys, aluminum-lithium alloys, and aluminum metal-matrix composites.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007037
EISBN: 978-1-62708-387-4
... cracking and HAZ/weld metal liquation cracking. These phenomena are discussed further in subsequent sections in this article. Solid-state cracking does not require liquid and can occur in either the weld HAZ or reheated weld metal. There are a variety of mechanisms by which solid-state cracks can develop...
Abstract
This article provides an overview of fractography as it applies to metal weldments and presents examples of various fracture surface morphologies to demonstrate how fractographic analysis can be used to determine the cause of weld failures. It identifies weld fractography principles and details several weldment-specific geometric and metallurgical considerations. The role of the weld-cracking mechanisms on the resultant fracture surfaces is described, along with example micrographs and fractographs of weldments. Common discontinuities related to welding processes and their impact on the resulting fracture behavior and surfaces are covered, as well as the common fractographic features related to fatigue failures of welds.
Image
Published: 31 October 2011
Fig. 45 Weld metal pulling and tearing the partially melted zone (PMZ). (a) Schematic showing the formation of liquation cracking in the PMZ of a partial-penetration gas metal arc weld of an aluminum alloy. The welding direction is perpendicular to the rolling direction. The weld metal
More
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005511
EISBN: 978-1-62708-197-9
... of the CALPHAD approach in materials design and processing development. Phase Diagram Calculation Examples In example 5, thermodynamic calculation coupled with a simple solidification model, that is, the Scheil model ( Ref 46 ), is used to explain the liquation cracking of aluminum welds. In example 6...
Abstract
This article focuses on the industrial applications of phase diagrams. It presents examples to illustrate how a multicomponent phase diagram calculation can be readily useful for industrial applications. The article demonstrates how the integration of a phase diagram calculation with kinetic and microstructural evolution models greatly enhances the power of the CALPHAD approach in materials design and processing development. It also discusses the limitations of the CALPHAD approach.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006614
EISBN: 978-1-62708-210-5
.... Jha A.K. , Narayanan P.R. , and Sreekumar K. , Liquation Cracking of Al-6.3 Cu Alloy Propellant Storage Tank—A Case Study , Eng. Fail. Anal. , Vol 16 (No. 5 ), 2009 , p 1587 – 1596 10.1016/j.engfailanal.2008.10.016 4. Elgallad E.M. , Zhang Z. , and Chen X.-G...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005613
EISBN: 978-1-62708-174-0
... at three temperatures shown in (a) when rapid heating is applied. Source: Ref 23 The partially melted zone is the region where liquation cracks have been known to occur in maraging steels, austenitic stainless steels, heat treatable aluminum alloys, and nickel-base superalloys. It can also...
Abstract
Solid-state transformations occurring in a weld are highly nonequilibrium in nature and differ distinctly from those experienced during casting, thermomechanical processing, and heat treatment. This article provides a description of the special factors affecting transformation behavior in a weldment. It reviews the heat-affected and fusion zones of single-pass and multi-pass weldments. The article also includes a discussion on the welds in alloy systems, such as stainless steels and aluminum-base, nickel-base, and titanium-base alloys.
Image
Published: 01 June 2024
Fig. 9 SEM micrographs (obtained at different magnifications) showing (a, b) thickened grain boundaries due to liquation adjacent to the heat-affected zone (HAZ) and (c, d) morphology of the intergranular cracks in the HAZ due to liquation along grain boundaries. Source: Ref 14
More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001431
EISBN: 978-1-62708-173-3
... metal or in the heat-affected zone (HAZ). Hot cracking is caused by low melting temperature constituents, in addition to tensile stress on the weld. Other names for hot cracking include microfissuring, solidification cracking, reheat cracking, and liquation cracking. In actual weldments, the tensile...
Abstract
This article focuses on the tests for evaluating the weldability, cracking susceptibility, weld pool shape, fluid flow, and weld penetration of base materials. These tests include different types of self-restraint tests, externally loaded tests for evaluating cracking susceptibility and weld penetration tests, weld pool shape tests, and Gleeble testing for evaluating weld pool shape, fluid flow, and weld penetration.
Image
Published: 09 June 2014
Fig. 25 Evidence of grain-boundary liquation (incipient melting) and intergranular cracking. Source: Ref 1
More
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007032
EISBN: 978-1-62708-387-4
... to the formation of shrinkage cracks during the solidification of the weld metal. Both austenitic and duplex stainless steels are susceptible to hot cracking; this refers to a type of cracking that is most common as longitudinal centerline or flare cracks in the weld. Liquation cracking in the HAZ occurs from...
Abstract
Stainless steel alloys have many unique failure mechanisms, including environmentally assisted cracking, cracking associated with welding, and secondary phase embrittlement. This article describes these failure mechanisms and the fracture modes associated with the different categories of stainless steel. These mechanisms and modes are grouped together because of their similarities across the categories.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001341
EISBN: 978-1-62708-173-3
... of constituent B in alloy C at three temperatures shown in (a) when rapid heating is applied. Source: Ref 19 The partially melted zone is the region where liquation cracks have been known to occur in maraging steels, austenitic stainless steels, heat-treatable aluminum alloys, and nickel-base...
Abstract
Solid-state transformations occurring in a weld are highly nonequilibrium in nature and differ distinctly from those experienced during casting, thermomechanical processing, and heat treatment. This article focuses on welding metallurgy of fusion welding of steels and highlights the fundamental principles that form the basis of many of the developments in steels and consumables for welding. Examples in the article are largely drawn from the well-known and relatively well-studied case of ferritic steel weldments to illustrate the special physical metallurgical considerations brought about by the weld thermal cycles and by the welding environment. The article provides information on welds in other alloy systems such as stainless steels and aluminum-base, nickel-base, and titanium-base alloys.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005628
EISBN: 978-1-62708-174-0
... that liquation cracking may initiate from the molten grain boundaries in the HAZ next to the fusion zone, as seen in Fig. 7 ( Ref 7 ). Fig. 7 Cracking in the heat-affected zone of an AA5754 weld near the fusion line. Source: Ref 7 In general, the following information can be obtained through...
Abstract
This article presents the structural attributes and internal characteristics of spot welds as well as the commonly inspected imperfections in resistance welds. It describes the industrial requirements for weld quality. Commonly performed destructive evaluations, namely, manual testing, quasi-static mechanical tests, dynamic mechanical tests, and metallographic examination, are reviewed. The article reviews weld-quality monitoring using various process signals and provides a discussion on the on-line and off-line nondestructive evaluation methods of spot weld quality.
Book
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.9781627083874
EISBN: 978-1-62708-387-4
1