Skip Nav Destination
Close Modal
Search Results for
linear elastic fracture toughness
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 102 Search Results for
linear elastic fracture toughness
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003224
EISBN: 978-1-62708-199-3
.... failure analysis fatigue fracture fatigue life fracture control concepts fracture mechanics linear-elastic fracture mechanics A FAILURE INVESTIGATION can have various objectives, such as assigning blame for the failure, or pin-pointing a lax supplier or an individual or department...
Abstract
The primary goal of failure analysis is to prevent the recurrence of product failures. This article discusses the sequence of activities in failure analysis and offers insight on how to gather background information, examine and assess damage, and identify the cause of the problem. It also explains where to look for evidence and how to collect samples for various types of testing. In addition, the article provides an introduction to fracture mechanics and explains how to predict and avoid fractures, including fatigue fracture, through testing and computational techniques.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006767
EISBN: 978-1-62708-295-2
... mechanics analysis linear elastic fracture mechanics analysis stress analysis equations stress analysis THE STRESSES acting on a component may cause unacceptable deformation, cracking, or fracture. By definition, after a stress-related failure has occurred, it is a given that the stresses reached a...
Abstract
This article describes concepts and tools that can be used by the failure analyst to understand and address deformation, cracking, or fracture after a stress-related failure has occurred. Issues related to the determination and use of stress are detailed. Stress is defined, and a procedure to deal with stress by determining maximum values through stress transformation is described. The article provides the stress analysis equations of typical component geometries and discusses some of the implications of the stress analysis relative to failure in components. It focuses on linear elastic fracture mechanics analysis, with some mention of elastic-plastic fracture mechanics analysis. The article describes the probabilistic aspects of fatigue and fracture. Information on crack-growth simulation of the material is also provided.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006774
EISBN: 978-1-62708-295-2
... loading in a corrosive environment (stress-corrosion fatigue), and elastic buckling. Elastic buckling may cause parts to contact, causing seizure of a rotating system, but it may also lead to plastic buckling and ultimately to fracture. The purpose of this article is to introduce the subject of...
Abstract
Engineering component and structure failures manifest through many mechanisms but are most often associated with fracture in one or more forms. This article introduces the subject of fractography and aspects of how it is used in failure analysis. The basic types of fracture processes (ductile, brittle, fatigue, and creep) are described briefly, principally in terms of fracture appearances. A description of the surface, structure, and behavior of each fracture process is also included. The article provides a framework from which a prospective analyst can begin to study the fracture of a component of interest in a failure investigation. Details on the mechanisms of deformation, brittle transgranular fracture, intergranular fracture, fatigue fracture, and environmentally affected fracture are also provided.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006775
EISBN: 978-1-62708-295-2
... tensile straining until the temperature was decreased to 119 K, but then the number of grains having twins increased rapidly, reaching 60% at 83 K ( Ref 23 ). Additionally, a not-quite-linear correlation was found between the lower yield strength and the number of grains containing twins, leading to the...
Abstract
This article focuses on characterizing the fracture-surface appearance at the microscale and contains some discussion on both crack nucleation and propagation mechanisms that cause the fracture appearance. It begins with a discussion on microscale models and mechanisms for deformation and fracture. Next, the mechanisms of void nucleation and void coalescence are briefly described. Macroscale and microscale appearances of ductile and brittle fracture are then discussed for various specimen geometries (smooth cylindrical and prismatic) and loading conditions (e.g., tension compression, bending, torsion). Finally, the factors influencing the appearance of a fracture surface and various imperfections or stress raisers are described, followed by a root-cause failure analysis case history to illustrate some of these fractography concepts.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005220
EISBN: 978-1-62708-187-0
... unfurling on mechanical properties of the solidified cast metal. It provides a discussion on the mechanisms of unfurling to determine the casting properties of the metals. These include gas precipitation, shrinkage, linear contraction, dendrite pushing, and nucleation and growth of intermetallics. The...
Abstract
Analysis of bifilms provides a simple, powerful, and elegant concept to explain many features of the metallurgy of castings. This article describes the effects of bifilms in metals. Mechanisms for the entrainment of bifilms are reviewed. The article describes the effect of furling and unfurling on mechanical properties of the solidified cast metal. It provides a discussion on the mechanisms of unfurling to determine the casting properties of the metals. These include gas precipitation, shrinkage, linear contraction, dendrite pushing, and nucleation and growth of intermetallics. The article also describes the role of bifilm defects in fracture.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003225
EISBN: 978-1-62708-199-3
... compressive) stress. Any other combination is known as a fluctuating stress. The linear-elastic fracture-mechanics approach is based on an analytical procedure that relates the stress-field magnitude and distribution in the vicinity of a crack tip to the nominal stress applied to the structure; to the...
Abstract
Analysis of the failure of a metal structure or part usually requires identification of the type of failure. Failure can occur by one or more of several mechanisms, including surface damage (such as corrosion or wear), elastic or plastic distortion, and fracture. This leads to a wide range of failures, including fatigue failure, distortion failure, wear failure, corrosion failure, stress-corrosion cracking, liquid-metal embrittlement, hydrogen-damage failure, corrosion-fatigue failure, and elevated-temperature failure. This article describes the classification of fractures on a macroscopic scale as ductile fractures, brittle fractures, fatigue fractures, and fractures resulting from the combined effects of stress and environment.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004017
EISBN: 978-1-62708-185-6
... will result in a straight line if Eq 17 is satisfied by the data ( Fig. 6 ). The linear slope of this line is n , and K is the true stress at ε=1.0 (corresponds to q =0.63). As shown in Fig. 7 , the strain-hardening exponent may have values from n =0 (perfectly plastic solid) to n =1 (elastic...
Abstract
This article focuses on the factors that determine the extent of deformation a metal can withstand before cracking or fracture occurs. It informs that workability depends on the local conditions of stress, strain, strain rate, and temperature in combination with material factors. The article discusses the common testing techniques and process variables for workability prediction. It illustrates the simple and most widely used fracture criterion proposed by Cockcroft and Latham and provides a workability analysis using the fracture limit line. The article describes various workability tests, such as the tension test, ring compression test, plane-strain compression test, bend test, indentation test, and forgeability test. It concludes with information on the role of the finite-element modeling software used in workability analysis.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001834
EISBN: 978-1-62708-181-8
... substantial σ phase. All 240× Examination of properly polished specimens without etching often presents a clearer picture of the extent of fracture because etched microstructural detail does not obscure the crack detail. Etching presents other dark linear features, such as grain boundaries, that may be...
Abstract
This article presents examples of the visual fracture examination that illustrate the procedure as it applies to failure analysis and quality determination. It describes the techniques and procedures for the visual and light microscopic examination of fracture surfaces with illustrations. The article also describes microscopic and macroscopic features of the different fracture mechanisms with illustrations with emphasis on visual and light microscopy examination. The types of fractures considered include ductile fractures, tensile-test fractures, brittle fractures, fatigue fractures, and high-temperature fractures.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003241
EISBN: 978-1-62708-199-3
... Abstract This article reviews the various types of mechanical testing methods, including hardness testing; tension testing; compression testing; dynamic fracture testing; fracture toughness testing; fatigue life testing; fatigue crack growth testing; and creep, stress-rupture, and stress...
Abstract
This article reviews the various types of mechanical testing methods, including hardness testing; tension testing; compression testing; dynamic fracture testing; fracture toughness testing; fatigue life testing; fatigue crack growth testing; and creep, stress-rupture, and stress-relaxation testing. Shear testing, torsion testing, and formability testing are also discussed. The discussion of tension testing includes information about stress-strain curves and the properties described by them.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003104
EISBN: 978-1-62708-199-3
... conditions are changing systematically. Wear testing of many materials results in a linear variation of wear with load. It is therefore tempting to extrapolate such data to higher load situations, especially because simple wear models generally predict a linear load dependence. However, this is not a...
Abstract
Wear of metals occurs by plastic displacement of surface and near-surface material, and by detachment of particles that form wear debris. This article presents a table that contains the classification of wear. It describes the testing and evaluation of wear and talks about the abrasive wear, lubrication and lubricated wear, and selection of steels for wear resistance. The article discusses the effect of alloying elements, composition, and mechanical properties of carbon and low-alloy steels at elevated temperatures. It talks about the fatigue resistance characteristics of steels, and describes the forms of embrittlement associated with carbon and low-alloy steels. The article provides information on the effect of composition, manufacturing practices, and microstructure on notch toughness of steels. Finally, it explains the effects of alloy elements, inclusion content, microstructure and heat treatment on fracture toughness of steels.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003060
EISBN: 978-1-62708-200-6
... is frequently a large scatter in the strength data. The first property manifests itself in that the material has a linear stress-strain relationship all the way from zero stress to failure. This linear relationship by itself is attractive to analysts because it makes the modeling process easier...
Abstract
The design process for ceramic materials is more complex than that of metals because of low-strain tolerance, low fracture toughness and brittleness. The application of structural ceramics to engineering systems hinges on the functional benefits to be derived and is manifested in the conceptual design for acceptable reliability. This article discusses the design considerations for the use of structural ceramics for engineering applications. It describes the conceptual design and deals with fast fracture reliability, lifetime reliability, joints, attachments, interfaces, and thermal shock in detailed design procedure. The article provides information on the proof testing of ceramics, and presents a short note on public domain software that helps determine the reliability of a loaded ceramic component. The article concludes with several design scenarios for gas turbine components, turbine wheels, ceramic valves, and sliding parts.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003058
EISBN: 978-1-62708-200-6
... analyses can provide insight into the role of loading conditions and crack geometry. In ceramics, crack growth occurs by truly brittle fracture. The ceramic behaves linear-elastically on a global scale, as well as locally at the crack tip up to the point where atomic bond rupture occurs. As a result...
Abstract
Failure analysis is a process of acquiring specified information regarding the appropriateness of the design of a part, the competence with which the various steps of its manufacture have been performed, any abuse suffered by it in packing and transportation, or the severity of service under which failure has occurred. Beginning with a discussion of the various stages of failure analysis of glass and ceramic materials, this article focuses on descriptive and quantitative fracture surface analysis techniques that are used in the examination of glass and surfaces created by fracture and the interpretation of the fracture markings seen on these surfaces. Details are provided for the procedures for locating fracture origins, determining direction of crack propagation, learning the sequence of crack propagation, deducing the stress state at the time of fracture, and observing interactions between crack fronts and inclusions, etc. A separate fractography terminology is provided in this article.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005324
EISBN: 978-1-62708-187-0
...-intensity factor, K Ic , obtained under plane-strain linear-elastic conditions. However, because of the ductility of ductile irons, most investigations of ferritic and pearlitic/ferritic irons have been conducted at subzero temperatures to obtain the necessary criteria of elastic behavior. Values ranging...
Abstract
This article begins with a description of the classes and grades of ductile iron. It discusses the factors affecting the mechanical properties of ductile iron. The article reviews the hardness properties, tensile properties, shear and torsional properties, compressive properties, fatigue properties, fracture toughness, and physical properties of ductile iron and compares them with other cast irons to aid the designer in materials selection. It concludes with information on austempered ductile iron.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003057
EISBN: 978-1-62708-200-6
... determining elements such as phosphorus, sulfur, tungsten, tin, and boron, which are not normally determined by atomic absorption. Other analytical characteristics include a wide linear working range, low limits of detection, and freedom from chemical interferences. Spectral interferences are a serious...
Abstract
This article describes testing and characterization methods of ceramics for chemical analysis, phase analysis, microstructural analysis, macroscopic property characterization, strength and proof testing, thermophysical property testing, and nondestructive evaluation techniques. Chemical analysis is carried out by X-ray fluorescence spectrometry, atomic absorption spectrophotometry, and plasma-emission spectrophotometry. Phase analysis is done by X-ray diffraction, spectroscopic methods, thermal analysis, and quantitative analysis. Techniques used for microstructural analysis include reflected light microscopy using polarized light, scanning electron microscopy, transmission electron microscopy, energy dispersive analysis of X-rays, and wavelength dispersive analysis of X-rays. Macroscopic property characterization involves measurement of porosity, density, and surface area. The article describes testing methods such as room and high-temperature strength test methods, proof testing, fracture toughness measurement, and hardness and wear testing. It also explains methods for determining thermal expansion, thermal conductivity, heat capacity, and emissivity of ceramics and glass and measurement of these properties as a function of temperature.
Book Chapter
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005677
EISBN: 978-1-62708-198-6
...-1200C Human enamel Compressive strength, MPa (ksi) 380 (55) 400 (58) Young's modulus, GPa (psi × 10 6 ) 120 (17.4) 80 (11.6) Knoop hardness, kg/mm 2 450 340 Density, g/cm 3 3.1 2.96 Coefficient of friction 0.24 0.36 Linear coefficient of thermal expansion, 10 −6 / °C...
Abstract
This article reviews the friction and wear of various dental materials that have been studied by fundamental wear measurements, simulated service wear measurements, and clinical measurements. The materials include dental amalgam, composite restorative materials, pit and fissure sealants, dental cements, porcelain and plastic denture teeth, dental feldspathic porcelain and ceramics, endodontic instruments, periodontal Instruments, and orthodontic wires. The article describes the correlations of properties, such as hardness, fracture toughness, and wear. It discusses wear mechanism such as sliding adhesive wear, two-body abrasion, three-body abrasion, erosion, and fatigue.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003061
EISBN: 978-1-62708-200-6
... material Property Desired value Fracture toughness High, >5 MPa m (>4.5 ksi in. ) Hardness High, >1200 kg · mm −2 Elastic modulus Low, <210 GPa (<30 × 10 6 psi) Density Low, <4 g/cm 2 (<0.14 lb/in. 3 ) Bend strength High, >700 MPa (>...
Abstract
Structural applications for advanced ceramics include mineral processing equipment, machine tools, wear components, heat exchangers, automotive products, aerospace components, and medical products. This article begins with an overview of the wear-resistant applications and the parameters affecting wear of ceramics, namely, hardness, thermal conductivity, fracture toughness, and corrosion resistance. The next part of the article addresses temperature-resistant applications of advanced ceramics. Specific applications of ceramic materials addressed include cutting tools, pump and valve components, rolling elements and bearings, paper and wire manufacturing, biomedical implants, heat exchangers, adiabatic diesel engines, advanced gas turbines, and aerospace applications.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
... characteristics can act singly or combine synergistically to reduce the strength, ductility, and toughness of metallic materials. These factors must also be considered in the evaluation and prevention of overload failures. Therefore, throughout this article, the term overload failure implies fracture due to...
Abstract
This article aims to identify and illustrate the types of overload failures, which are categorized as failures due to insufficient material strength and underdesign, failures due to stress concentration and material defects, and failures due to material alteration. It describes the general aspects of fracture modes and mechanisms. The article briefly reviews some mechanistic aspects of ductile and brittle crack propagation, including discussion on mixed-mode cracking. Factors associated with overload failures are discussed, and, where appropriate, preventive steps for reducing the likelihood of overload fractures are included. The article focuses primarily on the contribution of embrittlement to overload failure. The embrittling phenomena are described and differentiated by their causes, effects, and remedial methods, so that failure characteristics can be directly compared during practical failure investigation. The article describes the effects of mechanical loading on a part in service and provides information on laboratory fracture examination.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
... boiler steels. Source: Ref 14 Creep damage of metallic materials in the power-generation industry can be monitored through in situ Vickers hardness tests. For example, in chromium-molybdenum steels, an almost linear decrease in hardness has been observed during the secondary creep stage...
Abstract
The principal types of elevated-temperature mechanical failure are creep and stress rupture, stress relaxation, low- and high-cycle fatigue, thermal fatigue, tension overload, and combinations of these, as modified by environment. This article briefly reviews the applied aspects of creep-related failures, where the mechanical strength of a material becomes limited by creep rather than by its elastic limit. The majority of information provided is applicable to metallic materials, and only general information regarding creep-related failures of polymeric materials is given. The article also reviews various factors related to creep behavior and associated failures of materials used in high-temperature applications. The complex effects of creep-fatigue interaction, microstructural changes during classical creep, and nondestructive creep damage assessment of metallic materials are also discussed. The article describes the fracture characteristics of stress rupture. Information on various metallurgical instabilities is also provided. The article presents a description of thermal-fatigue cracks, as distinguished from creep-rupture cracks.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006779
EISBN: 978-1-62708-295-2
... defined by fracture, which means by the total separation of the structure. The fatigue limit and the high-cycle regime of the S - N curve are usually within the linear-elastic range and can therefore be based on loads, nominal stresses, structural stresses, or local stresses. For elastic-plastic...
Abstract
Fatigue failures may occur in components subjected to fluctuating (time-dependent) loading as a result of progressive localized permanent damage described by the stages of crack initiation, cyclic crack propagation, and subsequent final fracture after a given number of load fluctuations. This article begins with an overview of fatigue properties and design life. This is followed by a description of the two approaches to fatigue, namely infinite-life criterion and finite-life criterion, along with information on damage tolerance criterion. The article then discusses the characteristics of fatigue fractures followed by a discussion on the effects of loading and stress distribution, and material condition on the microstructure of the material. In addition, general prevention and characteristics of corrosion fatigue, contact fatigue, and thermal fatigue are also presented.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009003
EISBN: 978-1-62708-185-6
... ″ where n is the strain-hardening exponent, and K is the strength coefficient. A log-log plot of true stress and true strain up to maximum load results in a straight line if Eq 22 is satisfied by the data ( Fig. 7 ). The linear slope of this line is n , and K is the true stress at ε = 1.0...
Abstract
This article provides the definitions of stress and strain, and describes the relationship between stress and strain by stress-strain curves and true-stress/true-strain curves. The emphasis is on understanding the factors that determine the extent of deformation a metal can withstand before cracking or fracture occurs. The article reviews the process variables that influence the degree of workability and summarizes the mathematical relationships that describe the occurrence of room-temperature ductile fracture under workability conditions. It discusses the most common situations encountered in multiaxial stress states. The construction of a processing map based on deformation mechanisms is also discussed.