Skip Nav Destination
Close Modal
Search Results for
linear differential equations
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 455
Search Results for linear differential equations
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005453
EISBN: 978-1-62708-196-2
... Abstract This article describes the models of physical phenomena involving solution of differential equations such as ordinary or partial differential equations. It reviews the basic concepts of differential calculus and tabulates the expansion of functions into power series. A table of linear...
Abstract
This article describes the models of physical phenomena involving solution of differential equations such as ordinary or partial differential equations. It reviews the basic concepts of differential calculus and tabulates the expansion of functions into power series. A table of linear partial differential equations is also presented.
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005431
EISBN: 978-1-62708-196-2
... on the mathematical principles of solving differential equations. It also reviews linear structural problems to illustrate the concept of the FEMs. partial differential equation meshed-solution method finite-element method finite-difference method boundary-element method ENGINEERING MODELS are often...
Abstract
Several methods are developed for the numerical solution of partial differential equations, namely, meshed-solution methods such as the finite-element method (FEM), finite-difference method, and boundary-element method; and numerical algorithms consisting of so-called meshed-solution methods. This article introduces the methods of so-called meshed solutions, with an emphasis on the FEM. It presents some basic differential equations that are used to model the responses of structures, components, processes, or systems with emphasis on continuum mechanics. The article provides an outline on the mathematical principles of solving differential equations. It also reviews linear structural problems to illustrate the concept of the FEMs.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005877
EISBN: 978-1-62708-167-2
... and quantities of the EMF, their usage for the determination of the EMF distribution is possible only in a limited number of cases characterized by linear properties and simple geometry. Thus, for the analysis of induction heating phenomena, the Maxwell's equations in differential form are used more frequently...
Abstract
Electromagnetic problem solutions are based on the macroscopic theory of the continuous model for the electromagnetic field (EMF). It is described by a system of integral or partial differential equations for five vector quantities, namely, electric field strength, electric flux density, current density, magnetic field strength, and magnetic flux density. This article describes the behavior of the EMF by Maxwell's equations in integral or differential forms. It discusses the definition of potentials; methods of mathematical modeling; boundary conditions; and energy, power density, and electromagnetic forces.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005876
EISBN: 978-1-62708-167-2
.... As a result, the partial differential equation can be converted to a pair of ordinary differential equations, linked by a constant known as the separation constant, and so solved. A general solution then is taken that consists of a suitable linear combination of the products of the pairs of particular...
Abstract
Designing of induction heating, or, generally electro technological installations, requires mathematical modeling for solving problems related to various physical phenomena, including electromagnetic (EM), thermal, mechanical, fluidic, and metallurgical fields. This article focuses on the solution of Maxwell's equations (MEs) and provides some basic information regarding the heat transfer and fluid equations, because these physical phenomena usually are strongly coupled to magnetic and electric fields. The solutions are usually obtained by using specific numerical methods such as finite-element method, finite difference method, boundary-element method or volume-integral method, and direct-solution method. The article also discusses the typical structure of commercial codes (preprocessor, solver, and postprocessor) to solve field problems mainly in finite-element method.
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005450
EISBN: 978-1-62708-196-2
... A 2 If ρ is constant, then: (Eq 65) V 1 A 1 = V 2 A 2 Differential Formulation The differential formulation may be derived by applying the transport equation to a differential control volume. For Cartesian coordinates, the continuity equation is: (Eq...
Abstract
This article is a comprehensive collection of fluid dynamic equations for properties of fluids, fluid statics, fluid motion, dimensional analysis, and boundary layer flow. It presents equations for analyzing problems in fluid mechanics, continuity equation, momentum equation, and energy equation for solving various problems related to fluid dynamics.
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005451
EISBN: 978-1-62708-196-2
... transforms. laplace transformations THE METHODS OF LAPLACE AND FOURIER TRANSFORMATION and the Heaviside operational calculus are essentially aspects of the same method. This method simplifies solutions of such problems as ordinary differential equations with constant coefficients, linear...
Abstract
This article begins with information on fundamental Laplace transformation rules. Some general theorems concerning operations on transforms are provided. The article also discusses the applications of Laplace transforms. It concludes with a table that lists the values of Laplace transforms.
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005426
EISBN: 978-1-62708-196-2
... Abstract Computational fluid dynamics (CFD) is a computationally intensive three-dimensional simulation of thermal fluids systems where non-linear momentum transport plays an important role. This article presents the governing equations of fluid dynamics and an introduction to the CFD...
Abstract
Computational fluid dynamics (CFD) is a computationally intensive three-dimensional simulation of thermal fluids systems where non-linear momentum transport plays an important role. This article presents the governing equations of fluid dynamics and an introduction to the CFD techniques. It introduces some common techniques for discretizing the fluid-flow equations and methods for solving the discrete equations. These include finite-difference methods, finite-element methods, spectral methods, and computational particle methods. The article describes the approaches for grid generation with complex geometries. It discusses the four-step procedures used in the CFD process for engineering design: geometry acquisition, grid generation and problem specification, flow solution, and post-processing and synthesis. The article also provides information on the engineering applications of the CFD. It concludes with a discussion on issues and directions for engineering CFD.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002444
EISBN: 978-1-62708-194-8
... design Computational fluid dynamics has as its objective the numerical solution of fluid-flow equations. The calculus problem of solving a coupled system of nonlinear partial differential equations (PDEs) for the variables of interest (e.g., velocity, pressure, and temperature) is transformed...
Abstract
Computational fluid dynamics (CFD) is reserved for computationally intensive three-dimensional simulations of thermal fluids systems where nonlinear momentum transport plays an important role. This article presents the governing equations of fluid dynamics and an introduction to the CFD techniques for their solution. It introduces discretization techniques that are used by finite-difference, finite-volume, finite-element, spectral, and some particle methods. Associated concepts of numerical stability and accuracy are also reviewed. The article describes two approaches for grid generation with complex geometries: the use of unstructured grids and the use of special differencing methods on structured grids. The article describes the four-step procedures of the CFD process: geometry acquisition, grid generation and problem specification, flow solution, and post-processing and synthesis. It provides information on the applications of the engineering CFD. Issues and directions for the engineering CFD are also described.
Book Chapter
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006359
EISBN: 978-1-62708-192-4
... W = ∂ W ∂ N d N + ∂ W ∂ q d q Letting b = 1, and inserting Eq 25 into Eq 24 , the differential relationship becomes: (Eq 26) d W = W N d N + ( 3 c W q ) d q The above equation can then be integrated for particular...
Abstract
Impact wear can be defined as the wear of a solid surface that is due to percussion, which is a repetitive exposure to dynamic contact by another solid body. This article discusses the volume (or mass) removal of material either at or under engineering contact stress levels and outlines a rational, semi-empirical impact wear theory. It illustrates a linear wear mechanism that occurs in print heads and repetitive impacts that take place in metallic machine contacts. The article concludes with information on plotting a wear curve for an originally plane, massive carbon steel machine platen subjected to repetitive compound impact by a hard, nonwearing spherical-ended steel alloy component.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005439
EISBN: 978-1-62708-196-2
.... It is a linear differential equation for which there are several well-known solutions. Diffusion in Ternary and Higher-Order Multicomponent Alloys Binary alloys have only one independent variable, because the mole fraction or weight fraction of one component can always be used to calculate the fraction...
Abstract
This article presents various equations that are essential for the modeling of both single-phase and multiphase profiles. It includes the fundamental laws of diffusion, along with its equations and solutions. The article provides information on the series of applications that illustrate how various diffusional processes can be modeled.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001480
EISBN: 978-1-62708-173-3
... Solution of Partial Differential Equations by the Finite Element Method , Cambridge Press , 1987 8. Hughes T.J.R. , The Finite Element Method: Linear and Static and Dynamic Finite Element Analysis , Prentice-Hall , 1987 9. Rosenthal D. , The Theory of Moving Sources of Heat...
Abstract
This article focuses on the various assumptions involved in the numerical modeling of welds, including the geometry of the welded structure and the weld joint, thermal stress, strain, residual stress, and the microstructure in the heat-affected and fusion zones.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005587
EISBN: 978-1-62708-174-0
... Differential Equations by the Finite Element Method , Cambridge Press , 1987 8. Hughes T.J.R. , The Finite Element Method: Linear and Static and Dynamic Finite Element Analysis , Prentice-Hall , 1987 9. Rosenthal D. , The Theory of Moving Sources of Heat and Its Application...
Abstract
This article is a comprehensive collection of formulas and numerical solutions, addressing many heat-transfer scenarios encountered in welds. It provides detailed explanations and dimensioned drawings in order to discuss the geometry of weld models, transfer of energy and heat in welds, microstructure evaluation, thermal stress analysis, and fluid flow in the weld pool.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003024
EISBN: 978-1-62708-200-6
... are combined to eliminate ε M and ε VK to obtain a single second-order linear differential constitutive equation, which is solved under appropriate boundary conditions. As with the simpler mechanical analogs, the four-parameter element response to constant stress, strain rate, and instantaneous fixed...
Abstract
This article discusses the deformation and viscoelastic characteristics of plastics as polymeric materials, focusing on the test methods used for the evaluation of their mechanical properties, methods available for analytically predicting the deformation response of polymers, and the effect of viscoelasticity on the test methods used. Two common ways of evaluating viscoelasticity of plastics are by means of creep experiments and dynamic mechanical experiments. Graphic or tabular analysis of test data, time-temperature superposition, and empirical correlation methods are commonly employed for analytical prediction of deformation characteristics of polymers.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002383
EISBN: 978-1-62708-193-1
... modulus. The total strain consists of a linear and a nonlinear part: (Eq 6) ε = ε elastic + ε plastic Other common forms of the Ramberg-Osgood equations may be used instead. Equation 6 is used here to improve insight into the equations that follow. The total strain...
Abstract
This article discusses the conditions for collapse in center-cracked panels and describes the energy criterion for fracture. Measurement of toughness of any material by means of tensile and crack test is discussed. The procedures to be followed for linear elastic fracture mechanics cases are reviewed, along with elastic-plastic fracture mechanics and plastic fracture mechanics procedures with the aid of residual strength diagram. The article also explains the geometry factors needed to determine the toughness of materials.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005233
EISBN: 978-1-62708-187-0
... problem of solving a coupled system of nonlinear partial differential equations (PDEs) for the variables of interest (e.g., velocity, pressure, and temperature) is transformed into an algebra problem of solving a large system of simultaneous linear equations for discrete unknowns that represent the state...
Abstract
Computational fluid dynamics (CFD) is one of the tools available for understanding and predicting the performance of thermal-fluids systems. This article qualitatively describes the basic principles of CFD. The numerical methods, such as geometry description and discretization, used to solve the CFD equations are discussed. The article also demonstrates the application of CFD to a few casting problems.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0009218
EISBN: 978-1-62708-176-4
... involves the use of a creep equation (i.e., an analytical expression for creep strain as a function of time, stress, and temperature). Because these equations can generally be differentiated with respect to time to yield expressions for creep rate, they are more useful for design purposes than the other...
Abstract
This article presents typical problems encountered in the analysis of experimental creep and creep-rupture data and the possible solutions to these drawbacks. It provides information on planning the test and creep strain/time relationships. The exponential creep equation and the rational polynomial creep equation are discussed. The article also describes the dependence of stress and temperature on equation parameters and explains the lot-centered regression analysis.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005456
EISBN: 978-1-62708-196-2
... of friction do not change the direction of principal axes or distort the deformation field. This results in homogeneous deformation, with plane sections remaining plane. These assumptions converted the partial differential equations of plasticity to ordinary differential equations of first order that can...
Abstract
This article focuses on approximate closed-form analytical methods, such as slab and upper bound methods, used for forward and inverse design of metal forming problems. Selected examples of application of these methods to metal forming processes are also discussed.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0005752
EISBN: 978-1-62708-194-8
...DOI: 10.31399/asm.hb.v20.a0005752 Abbreviations and Symbols a crack length; thermal diffusivity of a product DAE differential algebraic equation A ampere dB decibel A area; ratio of the alternating stress amplitude to the mean stress A angstrom ABC activity-based costing ac alternating current AI...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003263
EISBN: 978-1-62708-176-4
... of the torque ( T ) versus the logarithm of the angle of twist per unit length (θ 1 ) at constant rate of twist ( θ ˙ 1 ) is linear and of slope n . Differentiating Eq 32 gives: (Eq 33) ( d T d θ 1 ) θ ˙ 1 = n T θ 1 Combining Eq 30...
Abstract
Torsion tests can be carried out on most materials, using standard specimens, to determine mechanical properties such as modulus of elasticity in shear, yield shear strength, ultimate shear strength, modulus of rupture in shear, and ductility. This article discusses the torsional deformation of prismatic bars of circular cross-section and torsional response of prismatic bars of noncircular cross-section. It analyzes the elastic deformation, plastic deformation, and the effect of strain rate on plastic deformation. The article describes the theory of anisotropy in plastic torsion and the various components of a torsion testing machine. These include drive system, test section, torque and rotational displacement transducers, and rigid frame.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005240
EISBN: 978-1-62708-187-0
... by a differential temperature change ( dT ). This is usually expressed by the relationship: (Eq 4) α V = 1 V ( ∂ V ∂ T ) P where V is the volume at a temperature, T , at a constant pressure, P . The corresponding definition for the linear coefficient of expansion can...
Abstract
There are several main sources of thermophysical property data that provide the most authoritative and comprehensive compilations of critically and systematically evaluated data that are presently available. This article provides thermophysical property data to assist in the materials properties selection for the simulation of casting processes. The measurements of thermophysical property are difficult due to high temperatures and the reactivity of some alloys. The article discusses the strategies adopted to minimize the effects of high temperatures and reactivity of alloys. It presents the thermophysical properties of pure metals and some commercial alloys and tabulates the enthalpy of fusion and solidus and liquidus temperatures for various alloys of commercial interest. The article also lists the density, thermal conductivity, surface tension, and viscosity for some commercial alloys.
1