Skip Nav Destination
Close Modal
By
Richard W. Heckel
By
Anil Chaudhary
By
James J. Noël
By
Erwin Dötsch
By
Bill Corbett
Search Results for
line defects
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1381
Search Results for line defects
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Deformation in a crystal lattice from slip of line defect (dislocation) fro...
Available to PurchasePublished: 01 January 2005
Fig. 2 Deformation in a crystal lattice from slip of line defect (dislocation) from a position in (a) to the edge in (c). The vector b is the Burgers vector, which is defined as the unit displacement of a dislocation.
More
Book Chapter
Crystal Structure
Available to PurchaseBook: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006292
EISBN: 978-1-62708-163-4
... tabulates the assorted structure types of metallurgical interest arranged according to Pearson symbol. It also provides information on crystal defects, explaining some significant ones, such as point defects, line defects, stacking faults, and twins. atom position crystal defects crystal structure...
Abstract
This article defines crystallographic terms and concepts, including crystal structure, unit cell, structure symbols, lattice, space-group notation, and atom position. It schematically illustrates the atom positions, prototypes, structure symbols, space-group notations, and lattice parameters for some of the simple metallic crystals. A table that lists the crystal structures of various metal elements is presented. The crystal structures are described by the Pearson symbols for crystal system, space lattice, total number of atoms per unit cell, and prototype structure. The article tabulates the assorted structure types of metallurgical interest arranged according to Pearson symbol. It also provides information on crystal defects, explaining some significant ones, such as point defects, line defects, stacking faults, and twins.
Book Chapter
Crystal Structure
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003722
EISBN: 978-1-62708-177-1
... of the simple metallic crystals. The article concludes with a description of some of the most significant crystal defects such as point defects, line defects, and stacking faults. atom position crystal structure lattice line defects metallic crystals Pearson symbol point defects point groups space...
Abstract
This article describes crystallographic terms and concepts and illustrates various crystal structures. The crystallographic terms described include crystal structure, unit cell, crystal system, lattice, structure symbols, space-group notation, structure prototype, atom positions, point groups, and equivalent positions. The article presents a table of assorted structure types of metallurgical interest arranged according to the Pearson symbol. It also schematically illustrates atom positions, prototypes, structure symbols, space-group notations, and lattice parameters for some of the simple metallic crystals. The article concludes with a description of some of the most significant crystal defects such as point defects, line defects, and stacking faults.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003084
EISBN: 978-1-62708-199-3
.... This article provides a brief review of the terms and basic concepts associated with crystal structures. It also discusses some of the significant defects obstructing plastic flow in real crystals, namely point defects, line defects, stacking faults, twins, and cold work. Several tables in the article provide...
Abstract
Crystal structure is the arrangement of atoms or molecules in the solid state that involves consideration of defects, or abnormalities, in idealized atomic/molecular arrangements. The three-dimensional aggregation of unit cells in the crystal forms a space lattice or Bravais lattice. This article provides a brief review of the terms and basic concepts associated with crystal structures. It also discusses some of the significant defects obstructing plastic flow in real crystals, namely point defects, line defects, stacking faults, twins, and cold work. Several tables in the article provide information on the crystal structures and lattice parameters of allotropes of metallic elements.
Image
Defect in an enamel coating on a low-carbon steel. (a) Defect shown through...
Available to Purchase
in Metallography and Microstructures of Low-Carbon and Coated Steels
> Metallography and Microstructures
Published: 01 December 2004
Fig. 55 Defect in an enamel coating on a low-carbon steel. (a) Defect shown through coating as a line in this macrograph (scale in mm). (b) Cause of line defect shown in (a). As-polished. 200×. Courtesy of Samuel Lawrence, International Steel Group
More
Image
(a)–(c) Surface fatigue damage resulting from “natural” ring cracks and (d)...
Available to PurchasePublished: 01 January 2002
Fig. 10 (a)–(c) Surface fatigue damage resulting from “natural” ring cracks and (d) line defects. (a) Ring cracks and wear track after 113 million stress cycles at crack location β = 0° and δ = 0, where β is the angle of the chord of ring crack to the central line of the contact track, and δ
More
Image
(a) Macroscopic view of joint-line remnant defect. (b) Higher-magnification...
Available to PurchasePublished: 31 October 2011
Fig. 10 (a) Macroscopic view of joint-line remnant defect. (b) Higher-magnification image showing the oxide particles dispersed in the processed zone. Source: Ref 48
More
Image
SEM image showing the drawing defect line at the initiation site of the fat...
Available to PurchasePublished: 30 August 2021
Fig. 7 SEM image showing the drawing defect line at the initiation site of the fatigue crack in Fig. 6 , magnification 400×
More
Image
Origin of defect leakage fields. (a) Magnetic flux lines of a magnet withou...
Available to PurchasePublished: 01 December 1998
Fig. 1 Origin of defect leakage fields. (a) Magnetic flux lines of a magnet without a defect. (b) Magnetic flux lines of a magnet with a surface defect
More
Image
Patch repair of a defect in a rubber lining. Courtesy of Blair Rubber Compa...
Available to PurchasePublished: 01 January 2003
Fig. 8 Patch repair of a defect in a rubber lining. Courtesy of Blair Rubber Company, Akron, OH
More
Book Chapter
Introduction to the Effects of Composition, Processing, and Structure on Materials Properties
Available to PurchaseSeries: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002459
EISBN: 978-1-62708-194-8
... of carbon, manganese, and silicon). It is now well established that the deformation of the wire during the original production of the coat hanger introduces structural defects (line defects called dislocations) into the otherwise uniform arrangement of the atoms (a body-centered cubic crystalline array...
Abstract
Materials are selected and used as a result of a match between their properties and the needs dictated by the intended application. This article provides information on how the composition and structure determine the properties of materials. It describes common structural elements that are most important in materials. The article presents a historical perspective of the use of materials and illustrates the evolution of engineering materials.
Book Chapter
Plastic Deformation Structures
Available to PurchaseSeries: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004018
EISBN: 978-1-62708-185-6
... be uniform or highly variable from point to point. The structures developed during plastic deformation depend on such factors as crystal structure, amount of deformation, composition, deformation mode, and deformation temperature and rate. In addition to line defects (dislocations), crystal lattices may...
Abstract
Plastic deformation can occur in metals from various mechanisms, such as slip, twinning, diffusion creep, grain-boundary sliding, grain rotation, and deformation-induced phase transformations. This article emphasizes on the mechanism of slip and twinning under cold working conditions. It discusses the factors on which the structures developed during plastic deformation depend. These factors include crystal structure, amount of deformation, composition, deformation mode, and deformation temperature and rate. The article illustrates the microstructural features that appear after substantial deformation when revealed through metallographic investigation.
Book Chapter
Modeling of Laser-Additive Manufacturing Processes
Available to PurchaseSeries: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005513
EISBN: 978-1-62708-197-9
... Generation Modeling defect generation in laser deposition is similar to prediction of defects in casting. The primary defects in laser deposition are lack of fusion, shrinkage, porosity, and cracking. They can be compared with weld-line defect, shrinkage, porosity, and cracking defects in casting...
Abstract
Additive manufacturing produces a change in the shape of a substrate by adding material progressively. This article discusses the simulation of laser deposition and three principal thermomechanical phenomena during the laser deposition process: absorption of laser radiation; heat conduction, convection, and phase change; and elastic-plastic deformation. It provides a description of four sets of data used for modeling and simulation of additive manufacturing processes, namely, material constitutive data, solid model, initial and boundary conditions, and laser deposition process parameters. The article considers three aspects of simulation of additive manufacturing: simulation for initial selection of process parameter setup, simulation for in situ process control, and simulation for ex situ process optimization. It also presents some examples of computational mechanics solutions for automating various components of additive manufacturing simulation.
Book Chapter
Effects of Metallurgical Variables on Aqueous Corrosion
Available to PurchaseSeries: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003616
EISBN: 978-1-62708-182-5
... or introduced later by heating, plastic deformation, or bombardment with high-energy radiation. Fig. 1 Point defects. A, interstitial atom; B, vacancy; C, foreign atom in lattice site Line Defects (one-Dimensional) Line defects (one-dimensional) are of two types—edge dislocations and screw...
Abstract
The corrosion behavior of a metal or alloy is determined by its composition and structural features, the environment and stresses to which it is exposed, and the behavior of any corrosion products generated. This article provides a detailed discussion on the fundamentals of pure metals, impure metals, and alloys. It highlights the ways in which the metallurgical variables, namely, composition and structure, influence the corrosion properties of metals and alloys in aqueous environment.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005669
EISBN: 978-1-62708-198-6
... boundaries present in cobalt-chromium alloys separating the fcc and hcp regions are defined by lattice line defects (dislocations) ( Ref 19 ), in this case, partial dislocations. The partial dislocations forming the boundaries of the stacking fault introduce increased free energy, countering the volume free...
Abstract
This article reviews the concepts considered important for an understanding of the processes used for preparing cobalt-chromium alloy implants, the microstructures resulting from this processing, and the resulting material properties. The review includes solidification of alloys, diffusionless (martensitic) phase transformation as occurs with face-centered cubic to hexagonal close-packed transformation in cobalt-chromium alloys, and stacking faults and twins and their role in this transformation. It also discusses the strengthening mechanisms that are responsible for the mechanical properties of cast and wrought cobalt alloys. The article contains tables that list the commonly used cobalt alloys and their biomedical applications and chemical compositions. It discusses the mechanical and corrosion properties of cobalt alloys, and provides a description of the microstructure of cobalt alloys.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006008
EISBN: 978-1-62708-172-6
... Abstract Coatings, such as those applied to ships, must be resistant to abrasion, in the case of cargo hold coatings, and cyclic changes of chemicals and tank cleaning, in the case of tank linings. Failures and defects can manifest themselves at various times in the life of a coating...
Abstract
Coatings, such as those applied to ships, must be resistant to abrasion, in the case of cargo hold coatings, and cyclic changes of chemicals and tank cleaning, in the case of tank linings. Failures and defects can manifest themselves at various times in the life of a coating. To determine the cause and mechanism of coating failure, all possible contributory factors must be evaluated together with a detailed history from the time of application to the time the failure was first noted. Many coating failures require further evaluation and analysis to be carried out by a qualified chemist or coating specialist, often using specialized laboratory equipment. The article presents examples of coating failures and defects, together with descriptions, probable causes, and suggested preventative measures.
Book Chapter
Operation of Induction Furnaces in Iron Foundries
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005904
EISBN: 978-1-62708-167-2
... in association with appropriate hood cover devices ensure that charging is in line with requirements, is splash-free, and extracts all the fumes during melting, superheating, skimming, holding, and during tapping. Process Engineering Features This progressive state of development has helped inductive...
Abstract
The crucible induction furnace is growing as an alternative melting unit to the cupola furnace due to its low specific power and reduced power consumption during solid melting material. This article details the process engineering features of the crucible induction furnace. It discusses the various processes involved in melting, holding, and pouring of liquid melt in crucible induction furnaces wherein the holding operation is carried out in channel furnace and pouring operation in pressure-actuated pouring furnaces. The article examines the behavior of furnace refractory lining to defects such as erosion, infiltration, crack formation, and clogging, and the corresponding preventive measures to avoid the occurrence of these defects. It elucidates the overall furnace operations, including commissioning, operational procedures, automatic process monitoring, inductor change, and dealing with disturbances.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006644
EISBN: 978-1-62708-213-6
... gradient upon passing through the crystal (e.g., regions away from the dislocation line). The variation of the misorientation should be less than the rocking curve width over an extinction distance, ξ g . Under these conditions, as a wavefield approaches the long-range distortion field of a dislocation...
Abstract
X-ray topography is the general term for a family of x-ray diffraction imaging techniques capable of providing information on the nature and distribution of imperfections. This article provides a detailed account of x-ray topography techniques, providing information on the historical background and development trends in x-ray diffraction topography. The discussion covers the general principles, components of systems, and applications of x-ray topography techniques, namely conventional X-ray topographic techniques and synchrotron x-ray topographic techniques.
Book Chapter
Introduction to Structures in Metals
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003721
EISBN: 978-1-62708-177-1
... aggregates, and interstitial atoms; line defects (dislocations); and area defects, for example, stacking faults, twin interfaces, subboundaries, and grain boundaries. They are described in specialized texts on the theory of dislocations and other crystal imperfections ( Ref 28 , 29 , 30 ). Electron...
Abstract
This article provides information on the general structural features and origins of metals. The characteristic structural features of single-phase metals and alloys, such as grain structure and substructure, are discussed. The article also describes the major types of multiphase structures and macrostructure of metals and alloys.
Book Chapter
Shop and Field Quality Control and Quality Assurance
Available to PurchaseSeries: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006016
EISBN: 978-1-62708-172-6
... and installation of the protective coating/lining system. Prior to beginning surface-preparation operations, many specifications will require a presurface-preparation inspection to verify the correction of fabrication defects and removal of surface contamination such as grease, oil, cutting compounds, lubricants...
Abstract
This article discusses the concepts of quality control (QC) and quality assurance (QA), and clarifies the differences and similarities in the roles and responsibilities of QC and QA personnel. It describes the inspection procedures used to verify proper surface preparation and installation of the protective coating/lining system. Prior to beginning surface-preparation operations, many specifications will require a presurface-preparation inspection to verify the correction of fabrication defects and removal of surface contamination such as grease, oil, cutting compounds, lubricants, and chemical contaminants. When inspecting concrete prior to coating installation, three areas of concern exist: surface roughness, moisture content in concrete, and acidity/alkalinity of the surface. The article provides information on the industry standards for assessing surface cleanliness. It details postcoating application quality requirements, including measuring of dry-film thickness, assessing intercoat cleanliness, verifying minimum and maximum recoat intervals, performing holiday/pinhole detection, conducting cure/hardness testing, and assessing adhesion of the applied coating system.
1