Skip Nav Destination
Close Modal
Search Results for
lightweight materials
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 301 Search Results for
lightweight materials
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1990
Image
Published: 01 January 1993
Fig. 34 Lightweight brazed titanium/steel rotor. A wear-resistant material brazed to the titanium shoe is secured by a screw. The steel shell is secured by fixing brackets. Weight reduction vs. solid steel rotor is 30%.
More
Image
Published: 01 January 2000
and, through leverage action, causes drag and jamming of plunger rod, producing inaccurate readings. When testing, the specimen must be pressed rigidly on the anvil by the pressure of the minor load. Because of this, only short or lightweight material may be permitted much overhang.
More
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003375
EISBN: 978-1-62708-195-5
... and reliability offered by lightweight structural cores. Current lightweight structural cores are classified into three primary types: honeycomb, balsa, and foam. There are numerous substrate materials within the honeycomb and foam categories. Lightweight structural cores can have a density as small as 16 kg/m 3...
Abstract
Lightweight structural cores are used on aircrafts to reduce weight and increase payload and fight distance. This article discusses the classification of lightweight structural cores, namely, honeycomb, balsa, and foam. It reviews the four primary manufacturing methods used to produce honeycomb: adhesive bonding and expansion, corrugation and adhesive bonding, corrugation and braze welding, and extrusion. The article describes cell configuration and properties of honeycomb. It discusses the factors influencing specification of structural cores, including materials, size, density, mechanical properties, environmental compatibility, formability, durability, and thermal behavior. The article provides information on the benefits and concepts of a sandwich panel containing lightweight structural cores.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002476
EISBN: 978-1-62708-194-8
... Abstract Brittle materials, such as ceramics, intermetallics, and graphites, are increasingly being used in the fabrication of lightweight components. This article focuses on the design methodologies and characterization of certain material properties. It describes the fundamental concepts...
Abstract
Brittle materials, such as ceramics, intermetallics, and graphites, are increasingly being used in the fabrication of lightweight components. This article focuses on the design methodologies and characterization of certain material properties. It describes the fundamental concepts and models associated with performing time-independent and time-dependent reliability analyses for brittle materials exhibiting scatter in ultimate strength. The article discusses the two-parameter and three-parameter Weibull distribution for representing the underlying probability density function for tensile strength. It reviews life prediction reliability models used for predicting the life of a component with complex geometry and loading. The article outlines reliability algorithms and presents several applications to illustrate the utilization of these reliability algorithms in structural applications.
Image
Published: 01 January 2001
Fig. 3 Materials selection chart depicting normalized strength and stiffness characteristics for various materials systems. Note the high amount of anisotropy (or directional dependence) in composite materials, which can be exploited to create extremely lightweight structures. DRA
More
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006316
EISBN: 978-1-62708-179-5
.... and Fitzgerald D.C. , “Lightweight Iron and Steel Castings for Automotive Applications,” No. 2000-01-0679, SAE Technical Paper Series, 2000 , p 1 – 9 Cast iron has many materially advantageous characteristics in comparison to castings made of aluminum, magnesium, and cast composites. Aluminum...
Abstract
Thin-wall gray cast iron (TWGCI) can be seen as a potential material for the preparation of lightweight castings in automotive engineering applications. This article discusses the most important challenges for TWGCI: cooling rate, solidification, macrostructure, microstructure, and chilling tendency. It reviews the tensile properties and thermophysical properties of gray cast iron. The article describes the variables that influence molten iron preparation: charge materials, melting furnace thermal regime, chemical composition, modification and inoculation treatment, holding time/pouring procedure, mold properties (mold temperature, thermophysical properties of mold and mold coating), and casting design.
Image
Published: 01 January 1997
Image
Published: 01 January 2005
Fig. 4 Stainless steel clad aluminum truck bumper material that combines the corrosion resistance of stainless steel with lightweight aluminum
More
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003394
EISBN: 978-1-62708-195-5
... Abstract Continuous fiber composite materials offer dramatic opportunities for producing lightweight laminates with tremendous performance capabilities. This article describes the kinematics of fabric deformation and explains the algorithms used in draping simulation. It discusses the basic...
Abstract
Continuous fiber composite materials offer dramatic opportunities for producing lightweight laminates with tremendous performance capabilities. This article describes the kinematics of fabric deformation and explains the algorithms used in draping simulation. It discusses the basic components, such as laminate and ply, of continuous fiber composite. The article provides information on the core sample and ply analysis. It details producibility, flat-pattern evaluations, and laminate surface offset. The article discusses various interfaces, such as the structural analysis interface, the resin transfer molding interface, the fiber placement and tape-laying interface, and the laser projection interface.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006693
EISBN: 978-1-62708-210-5
... Abstract Alloy 5005, available as architectural sheet and components, was introduced in 1935 to fill the need of the mobile-home industry for a lightweight, inexpensive, workable, corrosion-resistant siding material. This datasheet provides information on composition limits, mill product...
Abstract
Alloy 5005, available as architectural sheet and components, was introduced in 1935 to fill the need of the mobile-home industry for a lightweight, inexpensive, workable, corrosion-resistant siding material. This datasheet provides information on composition limits, mill product specifications, processing effects on physical and mechanical properties, and fabrication characteristics of this 5xxx series alloy.
Image
in A History of Wrought Aluminum Alloys and Applications
> Properties and Selection of Aluminum Alloys
Published: 15 June 2019
Fig. 20 The 1951 French Panhard Dyna X, with a cast aluminum spaceframe supporting a mostly aluminum shell on a lightweight steel chassis. Source: L. Chappuis and R. Sanders, Automotive Aluminum—Part 1, The Early Days: 1899–1948, Advanced Materials and Processes , May/June 2018
More
Image
in Ultrasonic and Thermal Metal Embedding for Polymer Additive Manufacturing
> Additive Manufacturing Processes
Published: 15 June 2020
Fig. 3 Comparison of yield strength between materials that can be 3D printed with wire and subjected to plastic injection molding. ABS, acrylonitrile butadiene styrene; FDM, fused deposition modeling; SS, stainless steel; CR, corrosion resistant; LWF, lightweight particle filtering; SCR, super
More
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003409
EISBN: 978-1-62708-195-5
... THE FIRST PRODUCTION of carbon fiber occurred in the late 1960s, it was realized that very lightweight layers of nonwoven tape would be required to fabricate thin shell and blade components, the first targets for the new lightweight material. Without weaving, the fibers could not be handled once taken off...
Abstract
The prepreg hand lay-up process is a versatile, reliable, cost-effective, and high quality process for fabricating large or small components. This article discusses the technique characteristics and applications of the process. It describes the stages involved in the process of lay-up, namely, lay-up definition, ply-kit cutting, layup, debulking, and preparation for curing. The article concludes with a discussion on the component properties and design guidelines of the prepreg hand lay-up process.
Image
in Thermophysical Properties of Liquids and Solidification Microstructure Characteristics—Benchmark Data Generated in Microgravity
> Metals Process Simulation
Published: 01 November 2010
Fig. 9 Intermetallic Materials Processing in Relation to Earth and Space Solidification (IMPRESS) integrated project. (a) Geographical distribution of IMPRESS partners in Europe. Courtesy of European Space Agency (ESA). (b) Lightweight, high-strength TiAl turbine blades. Courtesy of ACCESS e.V
More
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003479
EISBN: 978-1-62708-195-5
...-reinforced resin shell is lightweight, strong, and stiff, allowing minimum material to achieve high strength. The weight savings allows greater options in the placement of the urethane filler. The sweet spot can be made larger. Graphite also reduces vibration and the sting of ball shock, the tingling feeling...
Abstract
This article discusses the historical background of composite construction in recreational equipment and sporting goods. It provides information on the applications of composites in baseball bats, tennis rackets, and golf clubs. The applications of composites in bicycling, winter sports, aquatic sports, track, field, and archery equipment are also discussed.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006497
EISBN: 978-1-62708-207-5
...) is an asset in applications in which lightweight materials can assist in the efforts to reduce vehicular mass. Along with aluminum, the alloys of magnesium and titanium are excellent candidate materials for aerospace and vehicular applications because they offer the promise of lightweight structural...
Abstract
Aluminum powders can be formed into components by several competing technologies, including powder metallurgy (PM), metal injection molding, powder forging, and additive manufacturing. This article explores PM methodologies that are being exploited to manufacture such components. It reviews emerging technologies that promise to offer exciting ways to produce aluminum parts. The article discusses the various steps involved in PM, such as powder production, compaction, sintering, repressing, and heat treatment. It provides information on aluminum production statistics and the wear-resistance applications of PM.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003843
EISBN: 978-1-62708-183-2
... Abstract Portland cement concrete has low environmental impact, versatility, durability, and economy, which make it the most abundant construction material in the world. This article details the types and causes of concrete degradation. Concrete can be degraded by corrosion of reinforcing steel...
Abstract
Portland cement concrete has low environmental impact, versatility, durability, and economy, which make it the most abundant construction material in the world. This article details the types and causes of concrete degradation. Concrete can be degraded by corrosion of reinforcing steel and other embedded metals, chlorides, carbonation, galvanic corrosion, chemical attack, alkali-aggregate reaction, abrasion, erosion, and cavitation as well as many other factors. The article addresses the durability of concrete by two approaches, namely, the prescriptive approach and the performance approach. In the former, designers specify materials, proportions, and construction methods based on fundamental principles and practices that exhibit satisfactory performance. In the latter, designers identify functional requirements such as strength, durability, and volume changes and rely on concrete producers and contractors to develop concrete mixtures to meet those requirements.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003037
EISBN: 978-1-62708-200-6
... and flexible, but when combined in a sandwich panel they produce a structure that is stiff, strong, and lightweight. Brazed and diffusion-bonded metallic sandwich panels will not be discussed here, although, in general, the basic sandwich concepts apply in these cases also. Facing materials...
Abstract
Honeycomb is a product consisting of very thin sheets attached to form connecting cells. This article briefly explains the construction, core characteristics, properties, and testing methods of the honeycomb structures. It discusses the special processes carried out in customizing the shape of core to fit customer's specific needs. The article provides information on the basic concept of creating sandwich structures and its corresponding aspects like material selection, design guidelines, and structural efficiency.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009071
EISBN: 978-1-62708-177-1
... Fig. 12 Ultrathin section of a particle-modified interlayer-toughened composite material. Transmitted-light Hoffman modulation contrast, 20× objective Honeycomb/Foam Structure Composite Materials To further reduce the already lightweight composite materials and increase stiffness...
Abstract
This article illustrates the polymer matrices used for composite materials. It describes the use of prepeg materials in manufacturing high-performance composites. The article discusses the various infusion processes for the development of fiber-reinforced composites, namely, resin transfer molding, vacuum-assisted resin transfer molding, and resin film infusion. It explains the composite- and matrix-toughening methods for fiber-reinforced composites, such as dispersed-phase toughening and interlayer toughening. The article concludes with information on optical microscopy, which provides an insight into the micro- and macrostructure of fiber-reinforced composites.
1