1-20 of 157 Search Results for

light-water nuclear reactors

Sort by
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002471
EISBN: 978-1-62708-194-8
... to improve corrosion awareness and prevent corrosion/degradation. It describes a life prediction method with an example of environmental degradation in light-water nuclear reactors. The article concludes with a discussion on the validation of life-prediction algorithms and their applications. aqueous...
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006035
EISBN: 978-1-62708-172-6
... of Nuclear Power Plants This article focuses on coatings used in the two basic types of Generation 3 nuclear reactor designs in the United States: the boiling water reactor (BWR) and the pressurized water reactor (PWR). Both are cooled by deionized water (light water or H 2 O) and use enriched uranium...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004223
EISBN: 978-1-62708-184-9
... Abstract This article reviews a series of serious corrosion problems that have plagued the light water reactor (LWR) industry. It discusses the complex corrosion mechanisms involved, and the development of practical engineering solutions for their mitigation. The article contains tables...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004148
EISBN: 978-1-62708-184-9
... of Zircaloy , Zirconium in the Nuclear Industry, 12th Intl. Symp. , STP 1354, ASTM , 2000 , p 15 – 31 23. Cheng B.C. et al. , Fuel Performance and Water Chemistry Variables in LWRs , ANS Light Water Reactor Fuel Performance (Portland, OR), March 2–6 , 1997 , American Nuclear Society...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004145
EISBN: 978-1-62708-184-9
... degradation. Boiling water reactor topics dealing with localized corrosion of zirconium alloy fuel cladding, plus a detailed analysis of the effects of irradiation on corrosion are addressed in other articles in this Section, “Corrosion in the Nuclear Power Industry.” The corrosion of balance-of-plant...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004146
EISBN: 978-1-62708-184-9
... reactors pitting pressurized water reactor high-strength stainless steels primary water circuits secondary water circuits steam generator denting external bolting corrosion primary circuit radiation fields A PRESSURIZED WATER REACTOR (PWR) is a type of nuclear reactor that uses ordinary light...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004147
EISBN: 978-1-62708-184-9
... Abstract This article examines the understanding of persistent material changes produced in stainless alloys during light water reactor (LWR) irradiation based on the fundamentals of radiation damage and existing experimental measurements. It summarizes the overall trends and correlations...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001036
EISBN: 978-1-62708-161-0
...-energy neutrons during operation. However, irradiation damage from neutrons is also a factor in commercial light-water reactors, even though neutrons in a light-water reactor are moderated to reduce their energy (most neutrons in the spectrum of these reactors are thermal neutrons with energies much...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003610
EISBN: 978-1-62708-182-5
... Liquid lithium systems have been designed for two widely different areas: space nuclear power and fusion reactors. These two applications draw on unique properties of this liquid metal and have led to studies with a wide range of containment materials and operating conditions. Space power reactors...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005711
EISBN: 978-1-62708-171-9
... Abstract Nuclear power plants benefit from thermal spray coatings for corrosion and erosion minimization and dimensional restoration of worn parts. This article provides a detailed discussion on the advantages of thermal spray coatings, fission reactor component coatings, and coatings...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004144
EISBN: 978-1-62708-184-9
... to extend the design life of plants an additional 20 years. Most nuclear electricity is generated using two types of nuclear reactors that evolved from 1950 designs, namely the boiling water reactor and the pressurized water reactor. The fuel for these types of reactors is similar, consisting of long...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001441
EISBN: 978-1-62708-173-3
... general categories: commercial grade and reactor grade. Commercial-grade zirconium designates zirconium that contains hafnium as an impurity. Reactor-grade zirconium designates zirconium from which most of the hafnium has been removed to make it suitable for nuclear reactor applications. Because pure...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001084
EISBN: 978-1-62708-162-7
... excellent resistance to many corrosive media, including superheated water, and it is transparent to thermal energy neutrons. These properties prompted the U.S. Navy to use zirconium in water-cooled nuclear reactors as cladding for uranium fuel. In 1958, zirconium became available for industrial use...
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0007019
EISBN: 978-1-62708-439-0
... Abstract Nuclear energy harnesses the power of atomic interactions, whether through the fission of large nuclei or the fusion of light elements. Additive manufacturing (AM) can play several roles in this sector and is actively being researched and applied, although challenges remain...
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006026
EISBN: 978-1-62708-172-6
... in an operating boiling water reactor (BWR) or pressurized water reactor (PWR) nuclear plant is the design-basis accident that causes the reactor fuel to become partially or completely dewatered. When this condition occurs, the uncontrolled release of heat energy and radioactivity from the reactor core will soon...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003782
EISBN: 978-1-62708-177-1
..., with its high neutron cross section and corrosion resistance similar to zirconium in high-temperature water and steam environments, is used as nuclear reactor control rods and has been used for reprocessing of spent nuclear fuel. Zirconium also finds use in flashbulbs, incendiary devices, sputtering...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003328
EISBN: 978-1-62708-176-4
... ( Ref 1 ) contains some C and m values for different R -ratios of typical steels of light water reactors. Threshold stress-intensity values for selected materials Table 1 Threshold stress-intensity values for selected materials Material ASTM designation German designation Threshold...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003823
EISBN: 978-1-62708-183-2
.... In the nuclear power industry, stainless steel was used to clad uranium dioxide fuel for the first generation of reactors, but by 1965, zirconium alloys were the predominant cladding material for water-cooled reactors, launching a widespread effort to develop strong, corrosion-resistant zirconium alloys...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001312
EISBN: 978-1-62708-170-2
... and completely with flowing water, to prevent an insoluble fluoride surface stain from forming. This stain is extremely detrimental to corrosion resistance in hot water and steam environments of nuclear reactors. Extreme precautions to ensure a rapid and effective rinse are required for this service. A rapid...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006667
EISBN: 978-1-62708-213-6
.... In CP-1, the fast neutrons resulting from fission were slowed down (or moderated) using graphite. A major breakthrough was achieved shortly after by sucessfully maintaining a sustained nuclear reaction in another graphite reactor, named X-10, located at what became the Oak Ridge National Laboratory...