Skip Nav Destination
Close Modal
Search Results for
light water reactor
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 233 Search Results for
light water reactor
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004148
EISBN: 978-1-62708-184-9
... Abstract The components used in light water reactors (LWR) often remain in contact with the primary coolant, whose typical temperatures and pressures are highly aggressive, therefore, initiating corrosion in most of the alloys. This article describes the corrosion behavior of zirconium alloys...
Abstract
The components used in light water reactors (LWR) often remain in contact with the primary coolant, whose typical temperatures and pressures are highly aggressive, therefore, initiating corrosion in most of the alloys. This article describes the corrosion behavior of zirconium alloys in water and heat flow conditions that causes irradiation on the zirconium alloy assemblies. It discusses the effect of irradiation on the microstructure and morphology of cladded linings. The article describes the impact of metallurgical parameters on the oxidation resistance of zirconium alloys. It concludes with a discussion on LWR coolant chemistry and corrosion of fuel rods in reactors.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004147
EISBN: 978-1-62708-184-9
... Abstract This article examines the understanding of persistent material changes produced in stainless alloys during light water reactor (LWR) irradiation based on the fundamentals of radiation damage and existing experimental measurements. It summarizes the overall trends and correlations...
Abstract
This article examines the understanding of persistent material changes produced in stainless alloys during light water reactor (LWR) irradiation based on the fundamentals of radiation damage and existing experimental measurements. It summarizes the overall trends and correlations for irradiation-assisted stress-corrosion cracking. The article addresses the effects of various radiation factors on corrosion. These include radiation-induced segregation at grain boundaries, radiation hardening, mode of deformation, radiation creep relaxation, and radiolysis. The article discusses a variety of approaches for mitigating stress-corrosion cracking in LWRs, in categories of water chemistry, operating guidelines, new alloys, design issues, and stress mitigation. It concludes with a discussion on the irradiation effects of irradiation on corrosion of zirconium alloys in LWR environments.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004223
EISBN: 978-1-62708-184-9
... Abstract This article reviews a series of serious corrosion problems that have plagued the light water reactor (LWR) industry. It discusses the complex corrosion mechanisms involved, and the development of practical engineering solutions for their mitigation. The article contains tables...
Abstract
This article reviews a series of serious corrosion problems that have plagued the light water reactor (LWR) industry. It discusses the complex corrosion mechanisms involved, and the development of practical engineering solutions for their mitigation. The article contains tables that present the corrosion history of LWRs, and the ten most expensive operation and maintenance costs of corrosion for a particular reactor site.
Image
in Effect of Irradiation on Stress-Corrosion Cracking and Corrosion in Light Water Reactors
> Corrosion: Environments and Industries
Published: 01 January 2006
Fig. 15 Dependence of radiation-induced segregation on homologous temperature and dose rate for austenitic stainless steels. LWR, light water reactor
More
Image
Published: 01 January 2006
Fig. 14 Summary of irradiation-assisted stress-corrosion cracking (IASCC) in light water reactors and associated metallurgical changes in austenitic stainless steels as a function of neutron irradiation in n/cm 2 ( E ≥1 MeV) or displacements per atom (dpa). EFPY, effective full power year
More
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001036
EISBN: 978-1-62708-161-0
...-energy neutrons during operation. However, irradiation damage from neutrons is also a factor in commercial light-water reactors, even though neutrons in a light-water reactor are moderated to reduce their energy (most neutrons in the spectrum of these reactors are thermal neutrons with energies much...
Abstract
Damage to steels from neutron irradiation affects the properties of steels and is an important factor in the design of safe and economical components for fission and fusion reactors. This article discusses the effects of high-energy neutrons on steels. The effects of damage caused by neutron irradiation include swelling (volume increase), irradiation hardening, and irradiation embrittlement (the influence of irradiation hardening on fracture toughness). These effects are primarily associated with high-energy (greater than 0.1 MeV) neutrons. Consequently, irradiation damage from neutrons is of considerable importance in fast reactors, which produce a significant flux of high-energy neutrons during operation. Irradiation embrittlement must also be considered in the development of ferritic steels for fast reactors and fusion reactors. Although ferritic steels are more resistant to swelling than austenitic steels, irradiation may have a more critical effect on the mechanical properties of ferritic steels.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002471
EISBN: 978-1-62708-194-8
... to improve corrosion awareness and prevent corrosion/degradation. It describes a life prediction method with an example of environmental degradation in light-water nuclear reactors. The article concludes with a discussion on the validation of life-prediction algorithms and their applications. aqueous...
Abstract
This article discusses the principles of corrosion and the basis of the various prevention measures that can be taken for different corrosion modes. It describes aqueous corrosion phenomena in terms of the electrochemical reactions that occur at the metal-environment interface. The article explains the specific forms of corrosion, including general corrosion, localized attack, and environmentally assisted cracking. It provides a discussion on the engineering aspects of design that can, without due care and attention, precipitate unexpected premature failure. The article reviews ways to improve corrosion awareness and prevent corrosion/degradation. It describes a life prediction method with an example of environmental degradation in light-water nuclear reactors. The article concludes with a discussion on the validation of life-prediction algorithms and their applications.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004145
EISBN: 978-1-62708-184-9
... , 28 , 29 , 30 ) since this depletion, together with irradiation-induced metalloid segregation, can further reduce the IGSCC resistance over that associated solely with thermal sensitization. See the article “Effect of Irradiation on Corrosion and Stress-Corrosion Cracking in Light Water Reactors...
Abstract
This article focuses on the environmentally assisted cracking (EAC) of structural materials in boiling water reactors (BWRs), reactor pressure vessels, core internals, and ancillary piping. It discusses the effects of water chemistry on materials degradation, mitigation approaches, and their impact on aging management programs. The article reviews the effects of materials, environment, and stress factors on the cracking susceptibility of ferritic and austenitic structural alloys in BWRs. It describes the methods, such as data-based life-prediction approaches and mechanisms-informed life-prediction approaches, for predicting cracking kinetics in BWRs. The article provides information on several EAC mitigation techniques for BWR components, namely material solutions, stress solutions, and environmental solutions.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004144
EISBN: 978-1-62708-184-9
... bundles of 2 to 4% enriched uranium dioxide fuel pellets stacked in zirconium alloy cladding tubes. This Section deals with corrosion issues in light water reactors, research on the corrosion mechanisms, and the development and implementation of engineering solutions. The burial of spent fuel that has...
Abstract
This article provides a summary of the concepts discussed in the Section “Corrosion in Specific Industries” in the ASM Handbook, Volume 13C:Corrosion: Environments and Industries. This Section applies the fundamental understanding of corrosion and knowledge of materials of construction to practical applications. The industries addressed are nuclear power, fossil and alternative fuel, land transportation, air transportation, microelectronics, chemical processing, pulp and paper, food and beverage, pharmaceutical and medical technology, petroleum and petrochemical, building, and mining and metal processing.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004146
EISBN: 978-1-62708-184-9
... reactors pitting pressurized water reactor high-strength stainless steels primary water circuits secondary water circuits steam generator denting external bolting corrosion primary circuit radiation fields A PRESSURIZED WATER REACTOR (PWR) is a type of nuclear reactor that uses ordinary light...
Abstract
This article discusses the main materials and water chemistry characteristics of the primary and secondary water circuits of a pressurized water reactor (PWR). It reviews the corrosion issues of PWR materials and the influence of corrosion and fouling on primary and secondary circuit radiation fields. The article explains the primary side intergranular stress corrosion cracking (IGSCC) in different materials, namely, nickel-base alloys, high-strength nickel-base alloys, low-strength austenitic stainless steels, and high-strength stainless steels. The secondary side corrosion in steam generator including denting, pitting, intergranular attack and IGSCC is also discussed. The article examines laboratory studies that have resulted in models and computer codes for evaluating and predicting intergranular corrosion, and considers the remedial actions for preventing or arresting intergranular corrosion. It concludes with information on the external bolting corrosion in nuclear power reactors.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006035
EISBN: 978-1-62708-172-6
... of Nuclear Power Plants This article focuses on coatings used in the two basic types of Generation 3 nuclear reactor designs in the United States: the boiling water reactor (BWR) and the pressurized water reactor (PWR). Both are cooled by deionized water (light water or H 2 O) and use enriched uranium...
Abstract
Surface coatings are essential in all facilities that process nuclear materials or use nuclear fission for power generation. This article describes the coatings used in two basic types of Generation 3 nuclear reactor designs in the United States and their containment size. These reactors are the boiling water reactor (BWR) and pressurized water reactor (PWR). The article provides information on the loss-of-coolant accident (LOCA) identified as the design basis accident (DBA), which can rapidly de-water the core of an operating nuclear reactor. To avoid LOCA, both the BWR and the PWR include emergency core cooling systems. The article describes a DBA test and other coating performance parameters necessary for safety-related coating systems. It provides a detailed account of the selection criteria of coating types in a nuclear plant. The article concludes by highlighting protective coating strategies in Generation 3 Plants.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003328
EISBN: 978-1-62708-176-4
... ( Ref 1 ) contains some C and m values for different R -ratios of typical steels of light water reactors. Threshold stress-intensity values for selected materials Table 1 Threshold stress-intensity values for selected materials Material ASTM designation German designation Threshold...
Abstract
This article provides an overview of the safety aspects and integrity concept for pressure vessels, piping, and tubing. It focuses on the fracture mechanics approaches used to validate components with longitudinal cracks and circumferential cracks and to analyze crack growth behavior under cyclic loading. Full-scale testing facilities and the typical test results required for various applications are discussed. The article also presents information on the transferability of mechanical properties of materials.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005843
EISBN: 978-1-62708-167-2
..., reactors, and other magnetic products to the induction heating industry. These may operate from line frequency to approximately 800 kHz. Many of these products, because of the power and frequency range covered and the usual constraints of cost and physical size, are water cooled. The range of products...
Abstract
This article provides a discussion on transformers and reactors for induction heating. It presents information on the initial considerations in the selection process and the demands of power supply and load circuits. The article describes the types of transformers and reactors used in induction heating and maintenance operations. It also provides a discussion on load matching covering the following topics: initial considerations in the load-matching process, understanding the load circuit and the power supply circuit, selecting the desired operating point, adjusting the value of components, and testing the setup.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003610
EISBN: 978-1-62708-182-5
... to lithium at 1000 °C (1830 °F) for 2 h. Light micrograph. Etched with 25% HF, 12.5 HNO 3 , 12.5% H 2 SO 4 in water. Source: Ref 8 Fig. 16 Iron crystals found in a plugged region of a failed pump channel of a lithium processing test loop. Multifaceted platelike crystals are ∼0.4 mm (0.015...
Abstract
This article provides information on the liquid lithium systems that are exposed to liquid metal. It discusses the forms in which liquid-metal corrosion is manifested. The influence of several key factors on the corrosion of metals and alloys by liquid-metal systems or liquid-vapor metal coolants is described. Some information on safety precautions for handling liquid metals, operating circulating systems, dealing with fire and spillage, and cleaning contaminated components, are also provided.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001441
EISBN: 978-1-62708-173-3
... in water, followed by a thorough clean-water rinse and air drying. A joint cleaned by degreasing can still be covered by a very light oil film that is approximately the equivalent thickness of the residue left by fingerprints. This can be effectively removed by abrasive or detergent cleaning, using...
Abstract
Zirconium and its alloys are available in two general categories: commercial grade and reactor grade. This article discusses the welding processes that can be used for welding any of the zirconium alloys. These include gas-tungsten arc welding (GTAW), gas-metal arc welding (GMAW), plasma arc welding (PAW), electron-beam welding (EBW), laser-beam welding (LBW), friction welding (FRW), resistance welding (RW), resistance spot welding (RSW), and resistance seam welding (RSEW). The article reviews the selection of shielding gases and filler metals for welding zirconium alloys. It concludes with a discussion on process procedures for welding zirconium alloys.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006964
EISBN: 978-1-62708-439-0
... K.L. , Gollapudi S. , Ramaswamy K. , Mathew M.D. , and Charit I. , Creep Deformation of Materials in Light Water Reactors (LWRs) , Materials Ageing and Degradation in Light Water Reactors: Mechanisms and Management , Woodhead Publishing Ltd. , 2013 , p 81 – 148 10.1533...
Abstract
This article briefly introduces the concept of creep properties of additively manufactured (AM) alloys, with a focus on the effects of the characteristic microstructure of AM alloys on creep performance. Relevant postprocessing treatment also is discussed, in relation to improved creep performance based on the improvement of AM initial microstructure.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001084
EISBN: 978-1-62708-162-7
... excellent resistance to many corrosive media, including superheated water, and it is transparent to thermal energy neutrons. These properties prompted the U.S. Navy to use zirconium in water-cooled nuclear reactors as cladding for uranium fuel. In 1958, zirconium became available for industrial use...
Abstract
Zirconium, hafnium, and titanium are produced from ore that generally is found in a heavy beach sand containing zircon, rutile, and ilmenite. This article discusses the processing methods of these metals, namely, liquid-liquid separation process, distillation separation process, refining, and melting. It also discusses the primary and secondary fabrication of zirconium and hafnium and its alloys. The article talks about the metallurgy of zirconium and its alloys with emphasis on allotropic transformation, cold work and recrystallization, anisotropy and preferred orientation, and the role of oxygen. It concludes by providing useful information on the applications of reactor and industrial grades of zirconium alloys.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005711
EISBN: 978-1-62708-171-9
... Abstract Nuclear power plants benefit from thermal spray coatings for corrosion and erosion minimization and dimensional restoration of worn parts. This article provides a detailed discussion on the advantages of thermal spray coatings, fission reactor component coatings, and coatings...
Abstract
Nuclear power plants benefit from thermal spray coatings for corrosion and erosion minimization and dimensional restoration of worn parts. This article provides a detailed discussion on the advantages of thermal spray coatings, fission reactor component coatings, and coatings for nuclear fuel processing before and after irradiation for power plant applications. Nuclear fusion research is divided into two primary fields of study categorized by the method for confining the fusion fuel: magnetic confinement fusion and inertial confinement fusion.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003782
EISBN: 978-1-62708-177-1
..., with its high neutron cross section and corrosion resistance similar to zirconium in high-temperature water and steam environments, is used as nuclear reactor control rods and has been used for reprocessing of spent nuclear fuel. Zirconium also finds use in flashbulbs, incendiary devices, sputtering...
Abstract
Zirconium, hafnium, and their alloys are reactive metals used in a variety of nuclear and chemical processing applications. This article describes various specimen preparation procedures for these materials, including sectioning, mounting, grinding, polishing, and etching. It reviews some examples of the microstructure and examination for zircaloy alloys, hafnium, zirconium, and bimetallic forms.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006026
EISBN: 978-1-62708-172-6
... in an operating boiling water reactor (BWR) or pressurized water reactor (PWR) nuclear plant is the design-basis accident that causes the reactor fuel to become partially or completely dewatered. When this condition occurs, the uncontrolled release of heat energy and radioactivity from the reactor core will soon...
Abstract
Independent verification of coating system performance can be based on laboratory testing and/or field exposure. Qualification testing is a critical component to coating system selection. This article focuses on performance evaluations that are used to prequalify coating systems, namely, facility-specific, industry-specific, coating-type-specific, or a combination of these. It describes the standard laboratory tests used to generate performance data, namely, physical, compositional, chemical exposure, and application characteristics tests. The pros and cons of using manufacturer-generated data versus independently generated data are discussed. The article provides information on accelerated corrosion/weathering testing and nuclear level 1/level 2 service coatings qualification. It also describes the procedures for establishing minimum performance requirements and for determining when requalification testing may be required.
1