Skip Nav Destination
Close Modal
Search Results for
lead alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 2356
Search Results for lead alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003819
EISBN: 978-1-62708-183-2
... consistent durability in all types of atmospheric exposure, including industrial, rural, and marine. The article tabulates the corrosion of lead in various natural outdoor atmospheres and the corrosion of lead alloys in various soils. It explains the factors that influence in initiating or accelerating...
Abstract
The rate and form of corrosion that occur in a particular situation depend on many complex variables. This article discusses the rate of corrosion of lead in natural and domestic water depending on the degree of water hardness caused by calcium and magnesium salts. Lead exhibits consistent durability in all types of atmospheric exposure, including industrial, rural, and marine. The article tabulates the corrosion of lead in various natural outdoor atmospheres and the corrosion of lead alloys in various soils. It explains the factors that influence in initiating or accelerating corrosion: galvanic coupling, differential aeration, alkalinity, and stray currents. The resistance of lead and lead alloys to corrosion by a wide variety of chemicals is attributed to the polarization of local anodes caused by the formation of a relatively insoluble surface film of lead corrosion products. The article also provides information on the corrosion rate of lead in chemical environments.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003146
EISBN: 978-1-62708-199-3
... Abstract This article discusses the properties, primary and secondary production, product forms and applications of various grades of lead and lead-base alloys with the aid of several tables and illustrations. It lists the Unified Numbering System (UNS) designations for various pure lead grades...
Abstract
This article discusses the properties, primary and secondary production, product forms and applications of various grades of lead and lead-base alloys with the aid of several tables and illustrations. It lists the Unified Numbering System (UNS) designations for various pure lead grades and lead-base alloys grouped according to nominal chemical composition. The properties of lead that make it useful in a wide variety of applications are also discussed. The largest use of lead is in lead-acid storage batteries. Other applications include ammunition, cable sheathing, cast products such as type metals, terneplate, foils, and building construction materials. Lead is also used as an alloying element in steel and in copper alloys to improve machinability. The article concludes with information on the principles of lead corrosion, corrosion resistance of lead in water, atmospheres, underground ducts, soil and chemicals.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001078
EISBN: 978-1-62708-162-7
... Abstract This article discusses the processing, properties, and applications of various grades of lead and lead-base alloys with the aid of several tables and illustrations. It lists the Unified Numbering System (UNS) designations for various pure lead grades and lead-base alloys grouped...
Abstract
This article discusses the processing, properties, and applications of various grades of lead and lead-base alloys with the aid of several tables and illustrations. It lists the Unified Numbering System (UNS) designations for various pure lead grades and lead-base alloys grouped according to nominal chemical composition. The properties of lead that make it useful in a wide variety of applications are also discussed. The largest usage of lead is in the lead acid storage batteries (in the grid plates, posts, and connector straps). Other applications include ammunition; cable sheathing; cast products such as type metals, terneplates, and foils; and building construction materials. Lead is also used as an alloying element in steel and in copper alloys to improve machinability and other characteristics. In many applications, lead is combined with stronger materials to make structures that have the best qualities of both materials such as the plumbum series.
Image
Published: 01 January 2003
Fig. 10 Effect of tin on internal resistance of lead alloys or lead grids with a tin-rich coating during overcharge conditions in a lead-acid battery. Source: Ref 10
More
Image
Published: 01 January 1990
Fig. 5 Fatigue strengths of two cable-sheathing lead alloys in bending. Bending was at 25 °C (77 °F), one cycle per minute.
More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003773
EISBN: 978-1-62708-177-1
... Abstract This article describes the various specimen preparation procedures for lead, lead alloys, and sleeve bearings, including sectioning, mounting, grinding, polishing, and etching. The microscopic examination and microstructures of lead and lead alloys are discussed. The article also...
Abstract
This article describes the various specimen preparation procedures for lead, lead alloys, and sleeve bearings, including sectioning, mounting, grinding, polishing, and etching. The microscopic examination and microstructures of lead and lead alloys are discussed. The article also provides information on the microstructures of sleeve bearing materials.
Image
Published: 01 January 1986
Fig. 13 Dept profiles of the oxidized surface of the tin-lead alloy. (a) Sample was oxidized at 10 −5 torr of oxygen. (b) Sample was oxidized in air.
More
Image
Published: 01 January 2002
Fig. 7 Micrograph of a section through a copper-lead alloy bearing that failed by deleading. Light area at the upper surface is the copper matrix that remained after the alloy was depleted of lead. As-polished. 100×
More
Image
Published: 01 December 2004
Fig. 64 Forming mechanism of the banded structure of copper-lead alloy in upward directional solidification. Source: Ref 37
More
Image
Published: 01 December 2004
Fig. 49 Copper-lead alloy liner (SAE 48), gravity cast against inner wall of cylindrical steel shell (bottom). Coarse copper dendrites, blunted by addition of silver, in a continuous matrix of lead. Compare with Fig. 50 . NH 4 OH + H 2 O 2 . Original magnification 100×
More
Image
Published: 01 December 2004
Fig. 50 Same as Fig. 49 , except the copper-lead alloy liner was continuously cast on a steel backing strip (bottom of micrograph), which resulted in a faster cooling rate and thus produced finer dendrites of copper. NH 4 OH + H 2 O 2 . Original magnification 100×
More
Image
Published: 01 December 2004
Fig. 51 Copper-lead alloy liner (SAE 49), gravity cast against inside wall of cylindrical steel shell (bottom). Coarse copper dendrites (light) in a matrix of lead (dark). Compare with Fig. 52 . NH 4 OH + H 2 O 2 . Original magnification 100×
More
Image
Published: 01 December 2004
Fig. 52 Same as Fig. 51 , except the copper-lead alloy was continuously cast on a steel backing strip (bottom), which resulted in faster cooling and thus produced finer dendrites of copper. NH 4 OH + H 2 O 2 . Original magnification 100×
More
Image
Published: 31 December 2017
Fig. 6 Plot of bearing fatigue life versus thickness of a lead alloy Babbitt surface layer as a function of the number of layers used. Bearing load, 14 MPa (2 ksi)
More
Image
Published: 01 December 1998
Fig. 1 Plot of bearing fatigue life versus thickness of a lead alloy babbitt surface layer as a function of the number of layers used. Bearing load, 14 MPa (2 ksi)
More
Image
Published: 30 August 2021
Fig. 13 Micrograph of a section through a copper-lead alloy bearing that failed by deleading. Light area at the upper surface is the copper matrix that remained after the alloy was depleted of lead. As-polished. Original magnification: 100×
More
Image
Published: 01 January 1993
Image
Published: 09 June 2014
Image
Published: 27 April 2016
Fig. 8 Forming mechanism of the banded structure of copper-lead alloy in upward directional solidification. G.D., growth direction. Source: Ref 8 as published in Ref 5
More
Image
Published: 01 December 2008
1