1-20 of 558

Search Results for lattice parameters

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006293
EISBN: 978-1-62708-163-4
.... The lattice parameters of the unit cells are given in nanometers. The compilation of the table is restricted to changes in crystal structure that occur as a result of a change in temperature or pressure. allotropes crystal structure lattice parameter metallic elements phase transformation...
Image
Published: 30 September 2014
Fig. 8 Effect of carbon content on lattice parameters a of fcc (retained) austenite (top of graph), and a and c (bottom right of graph) and ratio c / a for bct martensite at room temperature. Source: Ref 6 More
Image
Published: 01 January 2002
Fig. 5 Carbon content versus lattice parameters of (retained) austenite and martensite at room temperature. a at the top of the graph is the lattice parameter of fcc austenite. a and c in the lower half of the graph are the lattice parameters for tetragonal martensite. The ratio of c More
Image
Published: 01 February 2024
Fig. 5 Carbon content versus lattice parameters of (retained) austenite and martensite at room temperature. “a” at the top of the graph is the lattice parameter of face-centered cubic austenite. a and c in the lower half of the graph are the two lattice parameters of tetragonal martensite More
Image
Published: 01 January 1994
Fig. 8 Variation of lattice parameter with cosθcotθ for sputtered titanium nitride in order to extrapolate a lattice parameter, a 0 , corrected for measurement errors More
Image
Published: 01 January 1990
Fig. 1 Variation of density of pure aluminum with temperature. Lattice parameter data given for solid aluminum More
Image
Published: 01 January 1990
Fig. 12 Influence of alloying elements on the lattice parameter of binary nickel alloys. Source: Ref 21 More
Image
Published: 01 October 2014
Fig. 13 Lattice parameter of nitrogen- and carbon-stabilized expanded austenite (S-phase) as a function of the number of interstitial nitrogen or carbon atoms per metal atom (γ N or γ C ). Source: Ref 13 More
Image
Published: 01 October 2014
Fig. 3 Lattice parameter of (expanded) austenite as a function of the interstitial content of nitrogen and carbon. The data were obtained with x-ray diffraction on nitrided or carburized thin foils. Source: Ref 46 , 47 , 48 More
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003251
EISBN: 978-1-62708-199-3
... the Debye-Scherrer camera and the X-ray diffractometer. The article also describes the uses of XRD analyses, such as the identification of phases or compounds in metals and ceramics; detection of order and disorder transformation; determination of lattice parameters and changes in lattice parameters due...
Book Chapter

Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006292
EISBN: 978-1-62708-163-4
... parameters for some of the simple metallic crystals. A table that lists the crystal structures of various metal elements is presented. The crystal structures are described by the Pearson symbols for crystal system, space lattice, total number of atoms per unit cell, and prototype structure. The article...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003084
EISBN: 978-1-62708-199-3
... information on the crystal structures and lattice parameters of allotropes of metallic elements. Bravais lattices crystal defects crystal structure metallic elements plastic flow CRYSTAL STRUCTURE, as defined broadly, is the arrangement of atoms or molecules in the solid state. Crystal...
Book Chapter

Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003722
EISBN: 978-1-62708-177-1
... groups, and equivalent positions. The article presents a table of assorted structure types of metallurgical interest arranged according to the Pearson symbol. It also schematically illustrates atom positions, prototypes, structure symbols, space-group notations, and lattice parameters for some...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001757
EISBN: 978-1-62708-178-8
..., such as lattice parameter, absorption diffraction, spiking, and direct comparison, explaining where each may be used. It also identifies potential sources of error in XRPD measurements. cameras qualitative analysis quantitative analysis X-ray detectors X-ray powder diffraction Overview...
Book Chapter

Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0006544
EISBN: 978-1-62708-183-2
... for each crystalline substance. The unique edge lengths are called lattice parameters. The term lattice constant also has been used for the length of an edge, but the values of edge length are not constant, varying with composition within a phase field and also with temperature due to thermal expansion...
Image
Published: 30 June 2023
Fig. 12 Generic demonstration part from nTopology Platform software. In the field superimposition approach, fields from one or more different physical domains can be derived and applied on a predefined lattice to identify regions to manipulate lattice parameters such as beam thickness. Source More
Image
Published: 01 January 2005
Fig. 3(a) Schematic drawings of the unit cells and ion positions for some simple metal crystals, arranged alphabetically according to Pearson symbol. Also listed are the space lattice and crystal system, space-group notation, and prototype for each crystal. Reported lattice parameters More
Image
Published: 01 January 2005
Fig. 3(b) Schematic drawings of the unit cells and ion positions for some simple metal crystals, arranged alphabetically according to Pearson symbol. Also listed are the space lattice and crystal system, space-group notation, and prototype for each crystal. Reported lattice parameters More
Image
Published: 01 January 2005
Fig. 3(c) Schematic drawings of the unit cells and ion positions for some simple metal crystals, arranged alphabetically according to Pearson symbol. Also listed are the space lattice and crystal system, space-group notation, and prototype for each crystal. Reported lattice parameters More
Image
Published: 01 January 2005
Fig. 3(d) Schematic drawings of the unit cells and ion positions for some simple metal crystals, arranged alphabetically according to Pearson symbol. Also listed are the space lattice and crystal system, space-group notation, and prototype for each crystal. Reported lattice parameters More