Skip Nav Destination
Close Modal
Search Results for
lattice correspondence
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 473
Search Results for lattice correspondence
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Modeling and Simulation of Microstructure Evolution during Heat Treatment of Titanium Alloys
> Heat Treating of Nonferrous Alloys
Published: 01 June 2016
Fig. 6 Schematic lattice correspondence between the body-centered cubic (bcc) β phase and the hexagonal close-packed (hcp) α phase during β → α transformation maintaining Burgers orientation relationship in both (a) to (c) three dimension and (e) to (f) two dimension. Source: Ref 15
More
Image
in Modeling and Simulation of Microstructure Evolution during Heat Treatment of Titanium Alloys
> Heat Treating of Nonferrous Alloys
Published: 01 June 2016
Fig. 7 Schematic lattice correspondences between β (body-centered cubic, or bcc) and α″ (orthorhombic) phases during β → α″ martensitic transformation. Source: Ref 5
More
Image
in Modeling and Simulation of Microstructure Evolution during Heat Treatment of Titanium Alloys
> Heat Treating of Nonferrous Alloys
Published: 01 June 2016
Fig. 11 Schematic lattice correspondences between the body-centered cubic (bcc) β phase and the hexagonal close-packed α phase during β → α transformation when maintaining (a) Pitsch-Schrader and (b) Burgers orientation relationships
More
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006277
EISBN: 978-1-62708-169-6
..., and transformation texture development during heat treatment of multicomponent alpha/beta and beta titanium alloys. It includes quantitative description of Burgers orientation relationship and path, discussion of lattice correspondence between the alpha and beta phases, and determination of the total number...
Abstract
This article describes the integration of thermodynamic modeling, mobility database, and phase-transformation crystallography into phase-field modeling and its combination with transformation texture modeling to predict phase equilibrium, phase transformation, microstructure evolution, and transformation texture development during heat treatment of multicomponent alpha/beta and beta titanium alloys. It includes quantitative description of Burgers orientation relationship and path, discussion of lattice correspondence between the alpha and beta phases, and determination of the total number of Burgers correspondence variants and orientation variants. The article also includes calculation of the transformation strain with contributions from defect structures developed at alpha/beta interfaces as a precipitates grow in size. In the CALculation of PHAse Diagram (CALPHAD) framework, the Gibbs free energies and atomic mobilities are established as functions of temperature, pressure, and composition and serve directly as key inputs of any microstructure modeling. The article presents examples of the integrated computation tool set in simulating microstructural evolution.
Image
Published: 01 January 1986
Fig. 6 Reciprocal lattice and Ewald construction corresponding to LEED and comparison to real-space picture. (a) Real-space schematic diagram of diffraction from a surface. The electron beam is incident on the sample along the direction given by e − . The five diffracted beams represent
More
Image
in Localization Parameter for the Prediction of Interface Structures and Reactions
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
Fig. 3 Plot of grain boundary planes in the fcc lattice that correspond to low energy orientation relationships (LEORs). It is assumed that the LEORS are symmetric tilt grain boundaries with the tilt axis [−101]. When the angle of misorientation increases from 0° to 180°, some grain boundaries
More
Image
Published: 15 December 2019
Fig. 6 Reciprocal lattice and Ewald construction corresponding to low-energy electron diffraction and comparison to real-space picture. (a) Real-space schematic diagram of diffraction from a surface. The electron beam is incident on the sample along the direction given by e − . The five
More
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005424
EISBN: 978-1-62708-196-2
... of the elastic stretch tensor was taken as the identity (corresponding to zero initial lattice strain). With this level of resolution, the simulations capture stress variations between crystals. However, because the order of the elemental interpolation is low (trilinear velocity field within crystals), stress...
Abstract
This article provides an explanation on how crystal plasticity is implemented within finite element formulations by the use of physical length scales: crystal scale and continuum scale. It provides theoretical formulations for kinematic framework for deforming crystals and polycrystals, elastic and plastic behaviors of single crystals, refinements to the single-crystal constitutive, and crystal-scale finite-element. The article also presents examples that illustrate the capabilities of the formulations at the length scales.
Image
Published: 01 December 2009
Fig. 13 (a) Simulated γ/γ′ microstructures with ±0.3% lattice misfit and no external load, aged at 1300 K for 4.7 h. After an additional 5.6 h aging under 152 MPa tensile stress along [001], rafted microstructures developed from (a) by assuming lattice misfit of (b) −0.3% and (c) +0.3%. Source
More
Image
Published: 01 January 1986
Fig. 7 Diffraction pattern from a superlattice. (a) Rectangular substrate lattice and corresponding diffraction pattern showing fundamental reflections. (b) Substrate plus p (2 × 1) overlayer and corresponding diffraction pattern showing fundamental and superlattice reflections. The overlayer
More
Image
Published: 15 December 2019
Fig. 7 Diffraction pattern from a superlattice. (a) Rectangular substrate lattice and corresponding diffraction pattern showing fundamental reflections. (b) Substrate plus p (2 × 1) overlayer and corresponding diffraction pattern showing fundamental and superlattice reflections. The overlayer
More
Image
Published: 01 January 1986
Fig. 11 Impurity atom taking tetrahedral and octahedral interstitial sites for fcc crystals. The schematic of the lattice planes and strings and their corresponding form of the angular yield profiles. Source: Ref 21
More
Image
Published: 15 December 2019
Fig. 13 Impurity atom taking tetrahedral and octahedral interstitial sites for face-centered cubic crystals. The schematics show the lattice planes and strings and their corresponding form of the angular yield profiles. Source: Ref 34
More
Image
Published: 01 December 2009
Fig. 8 Transition of the critical nucleus from a single-variant to a two-variant configuration with increasing lattice misfit. (a) ξ = 0.5. (b) ξ = 0.8. (c) ξ = 1.0. The corresponding nucleation barriers are shown in (d). (Model output images are in color.)
More
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003736
EISBN: 978-1-62708-177-1
... is a bcc structure. Nickel alloys such as nickel-aluminum and nickel-titanium (∼50 to 50 ratio) are also part of this alloy group, with a bcc parent phase. Since the transformations are diffusionless and lattice correspondence is maintained, order or disorder present in the parent phase is transferred...
Abstract
Martensite is a metastable structure that forms during athermal (nonisothermal) conditions. This article reviews the crystallographic theory, morphologies, orientation relationships, habit plane, and transformation temperature of ferrous martensite microstructures. It examines the stages of the tempering process involved in ferrous martensite. The article also describes the formation of the martensite structure in nonferrous systems. It concludes with a discussion on shape memory alloys.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003251
EISBN: 978-1-62708-199-3
... the Debye-Scherrer camera and the X-ray diffractometer. The article also describes the uses of XRD analyses, such as the identification of phases or compounds in metals and ceramics; detection of order and disorder transformation; determination of lattice parameters and changes in lattice parameters due...
Abstract
X-ray diffraction (XRD) is the most extensively used method for identifying and characterizing various aspects of metals related to the arrangements and spacings of their atoms for bulk structural analysis. XRD techniques are also applicable to ceramics, geologic materials, and most inorganic chemical compounds. This article describes the operating principles and types of XRD analyses, along with information about the threshold sensitivity and precision, limitations, sample requirements, and capabilities of related techniques. The necessary instrumentation for XRD analyses include the Debye-Scherrer camera and the X-ray diffractometer. The article also describes the uses of XRD analyses, such as the identification of phases or compounds in metals and ceramics; detection of order and disorder transformation; determination of lattice parameters and changes in lattice parameters due to alloying and temperature effects; measurement of residual stresses; characterization of crystallite size and perfection; characterization of preferred orientations; and determination of single crystal orientations.
Image
Published: 01 August 2013
Fig. 15 Electron backscatter diffraction maps of quenching and partitioning steel tension tested at 0 °C (32 °F). White corresponds to face-centered cubic lattice (retained austenite). Gray scale indicates the image quality, where darker-gray scale indicates lower image quality (higher
More
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001769
EISBN: 978-1-62708-178-8
..., the radius of the Ewald sphere or its orientation relative to the rods changes, consequently also changing the points of intersection with the rods. The directions of the outgoing vectors define the directions of the diffracted beams. Fig. 6 Reciprocal lattice and Ewald construction corresponding...
Abstract
Low-energy electron diffraction (LEED) is a technique for investigating the crystallography of surfaces and overlayers adsorbed on surfaces. This article describes the principles of diffraction from surfaces, and elucidates the method of sample preparation to achieve diffraction patterns. The article describes the limitations of surface sensitive electron diffraction and discusses the applications of LEED with examples.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006655
EISBN: 978-1-62708-213-6
... orientation relative to the rods changes, consequently also changing the points of intersection with the rods. The directions of the outgoing vectors define the directions of the diffracted beams. Fig. 6 Reciprocal lattice and Ewald construction corresponding to low-energy electron diffraction...
Abstract
Low-energy electron diffraction (LEED) is a technique for investigating the crystallography of surfaces and overlayers adsorbed on surfaces. This article provides a brief account of LEED, covering the principles and measurements of diffraction from surfaces. Some of the processes involved in sample preparation are described. In addition, the article discusses the limitations of surface-sensitive electron diffraction and the applications of LEED with examples.
Image
in Modeling and Simulation of Texture Evolution during the Thermomechanical Processing of Titanium Alloys
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
Fig. 5 Monte Carlo model simulation of texture-controlled grain growth for a material with two texture components. (a) Comparison of predicted grain-growth kinetics (solid line) and normal grain-growth kinetics (broken line). MU, model lattice units; MCS, Monte Carlo steps. (b) Simulated (100
More
1