Skip Nav Destination
Close Modal
Search Results for
laser-welded joints
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 351
Search Results for laser-welded joints
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 August 2013
Fig. 19 Microstructures of 1.6 mm (0.06 in.) Q&P 980 laser-welded joint. (a) Base material. (b) Fine-grained heat-affected zone (HAZ). (c) Weld seam. (d) Coarse-grained HAZ
More
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005641
EISBN: 978-1-62708-174-0
... properties of laser-welded joints, and weld pool geometry, are discussed. The article also reviews the various injuries and electrical and chemical hazards associated with laser beam welding. chemical hazards depth of focus depth of penetration diameter electrical hazards focal position gap size...
Abstract
This article provides an overview of the fundamentals, mechanisms, process physics, advantages, and limitations of laser beam welding. It describes the independent and dependent process variables in view of their role in procedure development and process selection. The article includes information on independent process variables such as incident laser beam power and diameter, laser beam spatial distribution, traverse speed, shielding gas, depth of focus and focal position, weld design, and gap size. Dependent variables, including depth of penetration, microstructure and mechanical properties of laser-welded joints, and weld pool geometry, are discussed. The article also reviews the various injuries and electrical and chemical hazards associated with laser beam welding.
Image
Published: 01 August 2013
Fig. 20 Microhardness profile across 1.6 mm (0.06 in.) Q&P 980 laser-welded joint. HAZ, heat-affected zone
More
Image
Published: 31 October 2011
Fig. 2 Joint designs for laser beam welds on wire. Arrows show direction of laser beam. (a) Butt weld. (b) Round-to-round lap weld. (c) Cross-joint weld. (d) Spot weld for T-joint. (e) Terminal or lug weld
More
Image
Published: 30 November 2018
Fig. 8 Joint designs for laser beam welds on wire. Arrows show direction of laser beam. (a) Butt weld. (b) Round-to-round lap weld. (c) Cross-joint weld. (d) Spot weld for T-joint. (e) Terminal or lug weld
More
Image
in Procedure Development and Practice Considerations for Laser-Beam Welding[1]
> Welding, Brazing, and Soldering
Published: 01 January 1993
Fig. 10 Joint designs for laser-beam welds on wire. Arrows show direction of laser beam. (a) Butt weld. (b) Round-to-round lap weld. (c) Cross-joint weld. (d) Spot weld for T-joint. (e) Terminal or lug weld
More
Image
Published: 31 October 2011
Fig. 1 Joint designs for laser beam welds on sheet metal. Arrows show direction of laser beam. Source: Ref 1
More
Image
Published: 31 October 2011
Fig. 9 Macrostructure samples from joints after laser roll welding of low-carbon steel sheet (JIS-SPCC) with (a) A1050 aluminum and (b) aluminum-magnesium alloy A5052. Laser power, welding speed, and roll pressure were: (a) 1.5 kW, 1.5 m/min (4.9 ft/min), and 150 MPa (22 ksi) for A1050, and (b
More
Image
Published: 31 October 2011
Fig. 14 Tensile shear specimens from steel-titanium joint after laser roll welding. (a) Failure at interface. (b) Failure in base metal of SPCC
More
Image
Published: 31 October 2011
Fig. 4 Example joint designs for hybrid laser arc welding. (a) Square butt. (b) V-groove. (c) U-groove. (d) Lap weld. (e) Fillet weld. (f) Dissimilar-thickness joint
More
Image
Published: 30 November 2018
Fig. 7 Joint designs for laser beam welds on sheet metal. Arrows show direction of laser beam. Source: Ref 20
More
Image
Published: 30 November 2018
Image
in Procedure Development and Practice Considerations for Laser-Beam Welding[1]
> Welding, Brazing, and Soldering
Published: 01 January 1993
Fig. 9 Joint designs for laser-beam welds on sheet metal. Arrows show direction of laser beam. Source: Ref 23
More
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005800
EISBN: 978-1-62708-165-8
... 0.06 3 5 16 0 0 0 He 15 4.0 Weld Joint Performance The 1.6 mm (0.06 in.) Q&P 980 has good laser weldability. For the welding parameters in Table 6 , the laser weld joint strength of 1.6 mm (0.06 in.) Q&P 980 was 1081 MPa (157 ksi), and the tensile failure was located...
Abstract
Quenching and partitioning (Q&P) steel is a term used to describe a series of C-Si-Mn, C-Si-Mn-Al, or other steels subjected to the quenching and partitioning heat treatment process. This article discusses the Q&P steel's chemical compositions and mechanical properties, and provides an overview of the important background and product characteristics with a focus on the automotive sheet steel application. It schematically represents the continuous annealing process, consequent phase-transformation behaviors, and forming-limit curves of Q&P steels. The article describes the parameters associated with resistance spot welding, laser welding, and metal active gas welding. It also provides useful information of retained austenite volume fraction measured by x-ray diffraction and electron backscatter diffraction. The article also examines microstructure evolution during tensile testing at different strain levels using electron backscatter diffraction.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006610
EISBN: 978-1-62708-210-5
... stringer combination exhibited a higher laser-welded joint strength compared with a baseline of the 6156 sheet and 6056 stringer being used ( Ref 1 ). Alloy 2198 (UNS A92198) composition limits Table 1 Alloy 2198 (UNS A92198) composition limits Element Limits Si 0.08 max Fe 0.10 max...
Abstract
Alloy 2198 is an Al-Cu-Li alloy that is used in combination with 2196-T8 stringers for the fuselage skins of the Bombardier C-Series. This datasheet provides information on composition limits of the alloy 2198 and provides a performance comparison of 2198-T8 and 2024-T351 alloys.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006502
EISBN: 978-1-62708-207-5
... displacement of the molten metal upward along the walls of the hole. If no motion is introduced, all the metal is vaporized and a hole is “pierced” through the material. By moving the laser beam along the weld joint, material is melted in the front half of the beam, with material solidifying along the trailing...
Abstract
Most welding lasers fall into the category of fiber, disc, or direct diode, all of which can be delivered by fiber optic. This article provides a comparison of the energy consumptions and efficiencies of laser beam welding (LBW) with other major welding processes. It discusses the two modes of laser welding: conduction-mode welding and deep-penetration mode welding. The article reviews the factors of process selection and procedure development for laser welding. The factors include power density, interaction time, laser beam power, laser beam diameter, laser beam spatial distribution, absorptivity, traverse speed, laser welding efficiency, and plasma suppression and shielding gas. The article concludes with a discussion on laser cutting, laser roll welding, and hybrid laser welding.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005631
EISBN: 978-1-62708-174-0
... Abstract This article describes the joint preparation, fit-up and design of various types of laser beam weld joints: butt joint, lap joint, flange joint, kissing weld, and wire joint. It explains the use of consumables for laser welding and highlights the special laser welding practices...
Abstract
This article describes the joint preparation, fit-up and design of various types of laser beam weld joints: butt joint, lap joint, flange joint, kissing weld, and wire joint. It explains the use of consumables for laser welding and highlights the special laser welding practices of steel, aluminum, and titanium engineering alloys. Laser weld quality and quality assessment are described with summaries of imperfections and how its operations contribute to providing repeatable and reliable laser welds. Relevant laser weld quality specifications are listed.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001445
EISBN: 978-1-62708-173-3
... process. It reviews the individual process variables that influence procedure development of the LBW process. Joint design and special practices related to LBW are discussed. The article concludes with a discussion on the use of consumables and special welding practices. joint design laser-beam...
Abstract
Laser-beam welding (LBW) is a joining process that produces coalescence of material with the heat obtained from the application of a concentrated coherent light beam impinging upon the surface to be welded. This article describes the steps that must be considered when selecting the LBW process. It reviews the individual process variables that influence procedure development of the LBW process. Joint design and special practices related to LBW are discussed. The article concludes with a discussion on the use of consumables and special welding practices.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005638
EISBN: 978-1-62708-174-0
... is introduced, all the metal is vaporized and a hole is “pierced” through the steel with no further action taking place. The laser beam is simply passing through the steel. By moving the laser beam along the weld joint, material is melted in the front half of the beam, with material solidifying along...
Abstract
This article reviews weld quality monitoring considerations for two automotive materials, steel and aluminum, with a focus on photosensor technology. It provides an overview of the process description, process parameters, and weld characteristics of laser welding. The article discusses real-time or in-process monitoring, which is done with optical, acoustic, and/or charged-particle sensors. It highlights the advantages, applications, and selection criteria of weld monitoring system and concludes with examples of laser weld monitoring in the production of tailor-welded blanks.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005620
EISBN: 978-1-62708-174-0
... is a hybrid process based on a thin-melting interface for a lap joint of dissimilar-metal sheets using a roller and one-sided laser heating. The article discusses the types, advantages, and applications of roll welding and laser roll welding. It also provides a detailed discussion on the laser roll welding...
Abstract
This article describes two methods based on rolling of sheet. The first is roll welding, where two or more sheets or plates are stacked together and then passed through rolls until sufficient deformation has occurred to produce solid-state welds. The other is laser roll welding, which is a hybrid process based on a thin-melting interface for a lap joint of dissimilar-metal sheets using a roller and one-sided laser heating. The article discusses the types, advantages, and applications of roll welding and laser roll welding. It also provides a detailed discussion on the laser roll welding of dissimilar metals.
1