Skip Nav Destination
Close Modal
By
Gabriele Maria Fortunato, Amedeo Franco Bonatti, Simone Micalizzi, Irene Chiesa, Elisa Batoni ...
Search Results for
laser-induced forward transfer printing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 53 Search Results for
laser-induced forward transfer printing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Laser-Induced Forward Transfer of Biomaterials
> Additive Manufacturing in Biomedical Applications
Published: 12 September 2022
Fig. 11 (a) Laser-induced forward transfer printing schematic. Three-dimensional (3D) cornea printed from human embryonic stem cells/limbal epithelial stem cells and human adipose-derived stem cells on (b) a glass slide and (c) a Matriderm (MedSkin Solution Dr. Suwelack AG) substrate (scale
More
Image
in Laser-Induced Forward Transfer of Biomaterials
> Additive Manufacturing in Biomedical Applications
Published: 12 September 2022
Fig. 9 (a) In vivo laser-induced forward transfer cell-printing process. (b) Cellular ring and disk patterns printed onto rat calvaria. Source: Ref 77 . Creative Commons License (CC BY-ND 4.0), https://creativecommons.org/licenses/by-nd/4.0/
More
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006860
EISBN: 978-1-62708-392-8
..., showcasing the current state of the art with the ultimate goal for tissue- and organ-printing applications. biomaterials extrusion printing inkjet printing laser-induced forward transfer printing organ-printing applications process simulations tissue-printing applications GREAT PROGRESS has...
Abstract
The use of 3D bioprinting techniques has contributed to the development of novel cellular patterns and constructs in vitro, ex vivo, and even in vivo. There are three main bioprinting techniques: inkjet printing, extrusion printing (also known as bioextrusion), laser-induced forward transfer (LIFT) printing, which is also known as modified LIFT printing, matrix-assisted pulsed-laser evaporation direct write, and laser-based printing (laser-assisted bioprinting, or biological laser printing). This article provides an overview of the LIFT process, including the LIFT process introduction, different implementations, jetting dynamics, printability phase diagrams, and printing process simulations. Additionally, materials involved during LIFT are introduced in terms of bioink materials and energy-absorbing layer materials. Also, the printing of single cells and 2D and 3D constructs is introduced, showcasing the current state of the art with the ultimate goal for tissue- and organ-printing applications.
Image
in Laser-Induced Forward Transfer of Biomaterials
> Additive Manufacturing in Biomedical Applications
Published: 12 September 2022
Fig. 6 Comparisons between jetting measurement images and jetting simulation results over time during laser-induced forward transfer printing of water-glycerol inks. Source: Ref 61 . Creative Commons License (CC BY-ND 4.0), https://creativecommons.org/licenses/by-nd/4.0/
More
Image
in Laser-Induced Forward Transfer of Biomaterials
> Additive Manufacturing in Biomedical Applications
Published: 12 September 2022
Fig. 8 (a) Cell-based Olympic flag pattern. Reprinted from Ref 20 with permission from Elsevier. (b) Schematic of laser-induced forward transfer printing on a patch. PEUU, poly(etherurethane urea). Matrigel, Corning Life Sciences. (c) Stained human mesenchymal stem cells in a gridlike form
More
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006565
EISBN: 978-1-62708-290-7
... microstructures in additive manufacturing. 3D printing laser-induced forward transfer LASER-INDUCED FORWARD TRANSFER (LIFT) is a digital direct-write printing technique with many applications in additive micromanufacturing, ranging from printed electronics to tissue engineering. Laser-induced forward...
Abstract
This article discusses the basic operating principles, industrial applications, and advantages as well as the parameters influencing the process of laser-induced forward transfer (LIFT) of solid materials, liquid materials, laser-absorbing layers, intact structures, and metallic 3D microstructures in additive manufacturing.
Image
in Laser-Induced Forward Transfer Processes in Additive Manufacturing
> Additive Manufacturing Processes
Published: 15 June 2020
Fig. 9 Schematic demonstrating lase-and-place technique where (a) a pocket is laser micromachined into a circuit board, (b) the bare die is transferred into the pocket via laser-induced forward transfer, and (c) interconnects are laser printed for electrical connections (not to scale)
More
Image
in Laser-Induced Forward Transfer of Biomaterials
> Additive Manufacturing in Biomedical Applications
Published: 12 September 2022
Fig. 1 (a) Schematic of a laser-induced forward transfer three-dimensional printing setup, with the jet formation mechanism shown in the inset. DWH, direct-writing height. (b) Typical implementation configuration
More
Image
Published: 12 September 2022
Fig. 15 Scale of natural biomaterials and printed feature size representation using different bioprinting methods. DPN, dip pen nanolithography; NFP, nano-fountain pen; NIL, nanoimprint lithography; DLP, digital light processing; SLA, stereolithography; LIFT, laser-induced forward transfer
More
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006858
EISBN: 978-1-62708-392-8
..., flexography printing, and gravure printing. Noncontact printing methods include extrusion printing, droplet printing, laser-based polymerization, and laser-based cell transfer. The wide variety of printable biomaterials, such as DNA, peptides, proteins, lipids, and cells, also are discussed...
Abstract
Three-dimensional plotting of biomaterials (also known as bioprinting) has been a major milestone for scientists and engineers working in nanobiotechnology, nanoscience, and nanomedicine. It is typically classified into two major categories, depending on the plotting principle, as contact and noncontact techniques. This article focuses on the working principles of contact and noncontact printing methods along with their advantages, disadvantages, applications, and challenges. Contact printing methods include micro-plotter, pen printing, screen printing, nanoimprint printing, flexography printing, and gravure printing. Noncontact printing methods include extrusion printing, droplet printing, laser-based polymerization, and laser-based cell transfer. The wide variety of printable biomaterials, such as DNA, peptides, proteins, lipids, and cells, also are discussed.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006893
EISBN: 978-1-62708-392-8
... bioprinting, electrohydrodynamic jetting (EHDJ), and laser-assisted bioprinting (LAB). Moreover, inkjet bioprinting can be subdivided into continuous inkjet and drop-on-demand inkjet printing. Laser-assisted bioprinting can be subdivided into laser guidance direct writing and laser-induced forward transfer...
Abstract
This article focuses on the pneumatic extrusion-based system for biomaterials. It provides an overview of additive manufacturing (AM) processes, followed by sections covering steps and major approaches for the 3D bioprinting process. Then, the article discusses the types, processes, advantages, limitations, and applications of AM technology and extrusion-based approaches. Next, it provides information on the research on extrusion-based printing. Finally, the article provides a comparison of the extrusion-based approach with other approaches.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006864
EISBN: 978-1-62708-395-9
... the frictional force between the plastic/screw. This mechanism is known as drag-induced conveying. If the frictional force between the plastic/screw is too large, then plastic will stick to the screw as it rotates and will not be conveyed forward. To increase the frictional forces between the barrel/plastic...
Abstract
This article discusses technologies focused on processing plastic materials or producing direct tools used in plastics processing. The article focuses on extrusion and injection molding, covering applications, materials and their properties, equipment, processing details, part design guidelines, and special processes. It also covers the functions of the extruder, webline handling, mixing and compounding operations, and process troubleshooting. Thermoforming and mold design are covered. Various other technologies for polymer processing covered in this article are blow molding, rotational molding, compression molding, transfer molding, hand lay-up process, casting, and additive manufacturing.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006863
EISBN: 978-1-62708-392-8
... at the Nagoya Municipal Industrial Institute, invented the original concept of laser beam lithography and procured the patent. In 1980, this was the epoch-making event in the history of 3D printing technology. In the following years, Mr. Chuck Hull invented the first 3D printing machine in the world, called...
Abstract
Of the seven additive manufacturing (AM) processes, this article focuses on the vat photopolymerization, or simply vat polymerization, process, while briefly discussing the other six AM processes. Vat polymerization and its characteristics, AM applications in medical fields, and the regulatory challenges of vat polymerization-based bioprinting are presented.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.9781627083928
EISBN: 978-1-62708-392-8
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006905
EISBN: 978-1-62708-392-8
...—and place it in a dropwise manner; extruder bioprinters, which form stacks while extruding from a syringe; and laser-assisted bioprinters, which perform local transfers via laser irradiation. In all cases, the bio-ink is placed at an arbitrary location, and the scaffold is fixed by photocrosslinking...
Abstract
This article provides an overview of additive manufacturing (AM) methods, the three-dimensional (3D)-AM-related market, and the medical additive manufactured applications. It focuses on the current scenario and future developments related to metal AM for medical applications. The discussion covers the benefits of using 3D-AM technology in the medical field, provides specific examples of medical devices fabricated by AM, reviews trends in metal implant development using AM, and presents future prospects for the development of novel high-performance medical devices via metal 3D-additive manufacturing.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006894
EISBN: 978-1-62708-392-8
... process as well as a lack of control over the resolution of the printed construct. Laser-Based Printing Laser-based printing ( Fig. 1c ) is based on the transfer of bioink from a donor substrate to a receiving substrate, which is placed directly below ( Ref 25 ). The transfer is controlled by laser...
Abstract
This article discusses the state of the art in the 3D bioprinting field. It examines the printability of protein-based biopolymers and provides key printing parameters, along with a brief description of the main current 3D bioprinting approaches. The article presents some studies investigating 3D bioprinting of naturally derived proteins for the production of structurally and functionally biomimetic scaffolds, which create a microenvironment for cells resembling that of the native tissues. It describes key structural proteins processed in the form of hydrogels, such as collagen, silk, fibrin, and others such as elastin, decellularized matrix, and Matrigel (Corning), which are used as biomaterials.
Book Chapter
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006890
EISBN: 978-1-62708-392-8
...-induced forward transfer) is based on a high-intensity laser that propels the bioink droplets in a noncontact mode. An LBB bioprinter consists of three main components: a pulsed laser beam, a ribbon that contains the bioink to print, and a receiving substrate. The laser beam is transmitted through...
Abstract
Bioprinting has been advancing in the field of tissue engineering as the process for fabricating scaffolds, making use of additive manufacturing technologies. In situ bioprinting (also termed intraoperative bioprinting) is a promising solution to address the limitations of conventional bioprinting approaches. This article discusses the main approaches and technologies for in situ bioprinting. It provides a brief overview of the bioprinting pipeline, highlighting possible solutions to improve currently used approaches. Additionally, case studies of in situ bioprinting are provided and in situ bioprinting future perspectives are discussed.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006968
EISBN: 978-1-62708-439-0
... input, and coalescence/cooling ( Ref 11 ). A thin layer of polymer powder is coated by a roller or blade on the substrate or the previously printed layer. After the coating, an infrared laser sinters the selective area. A 3D model can be built layer by layer by repeating this process. Similar to PBF...
Abstract
Additive manufacturing (AM) is a revolutionary technology that fabricates parts layerwise and provides many advantages. This article discusses polymer AM processes such as material extrusion, vat photopolymerization (VPP), powder-bed fusion (PBF), binder jetting (BJ), material jetting (MJ), and sheet lamination (SL). It presents the benefits of online monitoring and process control for polymer AM. It also introduces the respective monitoring devices used, including the models and algorithms designed for polymer AM online monitoring and control.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006891
EISBN: 978-1-62708-392-8
...” to scaffolds and induce the cells to differentiate into tissue cells to print artificial tissues. Biological 3D printing technology that is based on cell printing has become a technical route for the construction of tissues and has attracted widespread attention in the fields of biomedicine, biology...
Abstract
Piezoelectric jetting is a common form of additive manufacturing technology. With the development of material science and manufacturing devices, piezoelectric jetting of biomaterials has been applied to various fields including biosensors, tissue engineering, deoxyribonucleic acid (DNA) synthesis, and biorobots. This article discusses the processes involved in piezoelectric jetting of biosensors and biorobots and the applications of piezoelectric jetting for tissue engineering and producing DNA. In addition, it reviews the challenges and perspectives of piezoelectric jetting.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006898
EISBN: 978-1-62708-392-8
... an external circuit is connected, current passes through the load. Eventually, due to mechanical pressure when two layers are pressed together again, the induced potential difference becomes zero. Then, the charges that transferred through the load begin to flow in the reverse direction, resulting...
Abstract
Additive manufacturing (AM) has been growing as a significant research interest in academic and industry research communities. This article presents flexible and biocompatible energy-harvesting devices using AM technology. First, it discusses material selection for achieving piezoelectricity and triboelectricity. Then, the article highlights the structures of energy harvesters and describes their working mechanisms. Next, it covers the additively manufactured implantable piezoelectric and triboelectric energy harvesters. Further, the article describes the 3D-printed wearable energy harvesters as well as their applications. An overview of additively manufactured self-powered sensors is highlighted. Finally, the article discusses the issues for 3D-printed energy harvesters and their roadmap.
1