Skip Nav Destination
Close Modal
Search Results for
laser-beam power
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 514 Search Results for
laser-beam power
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 30 November 2018
Fig. 13 Effect of laser processing parameters (laser beam power, focal position, thickness) on cutting speed. Source: Ref 21 . Reproduced with permission from LIA Handbook of Laser Materials Processing. Copyright 2001, Laser Institute of America, Orlando, Florida. The Laser Institute
More
Image
Published: 01 August 2013
Image
Published: 01 January 2006
Image
Published: 01 December 1998
Image
Published: 30 November 2018
Fig. 9 Commercial scanning system for high-power beam manipulation for laser stir welding. Courtesy of Laser Mechanisms Corporation
More
Image
in Introduction to High Energy Density Electron and Laser Beam Welding
> Welding Fundamentals and Processes
Published: 31 October 2011
Fig. 1 Beam parameter product (BPP) plotted versus laser power up to the highest commercially available power levels for six different types of lasers. SM and MM refer to single-mode and multimode fiber lasers, respectively; Nd:YAG refers to neodymium: yttrium-aluminum-garnet laser
More
Image
in Introduction to High Energy Density Electron and Laser Beam Welding
> Welding Fundamentals and Processes
Published: 31 October 2011
Fig. 3 Beam parameter product (BPP) plotted versus laser power, showing typical regions used for low- and high-brightness laser applications
More
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006502
EISBN: 978-1-62708-207-5
... modes of laser welding: conduction-mode welding and deep-penetration mode welding. The article reviews the factors of process selection and procedure development for laser welding. The factors include power density, interaction time, laser beam power, laser beam diameter, laser beam spatial distribution...
Abstract
Most welding lasers fall into the category of fiber, disc, or direct diode, all of which can be delivered by fiber optic. This article provides a comparison of the energy consumptions and efficiencies of laser beam welding (LBW) with other major welding processes. It discusses the two modes of laser welding: conduction-mode welding and deep-penetration mode welding. The article reviews the factors of process selection and procedure development for laser welding. The factors include power density, interaction time, laser beam power, laser beam diameter, laser beam spatial distribution, absorptivity, traverse speed, laser welding efficiency, and plasma suppression and shielding gas. The article concludes with a discussion on laser cutting, laser roll welding, and hybrid laser welding.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005641
EISBN: 978-1-62708-174-0
... information on independent process variables such as incident laser beam power and diameter, laser beam spatial distribution, traverse speed, shielding gas, depth of focus and focal position, weld design, and gap size. Dependent variables, including depth of penetration, microstructure and mechanical...
Abstract
This article provides an overview of the fundamentals, mechanisms, process physics, advantages, and limitations of laser beam welding. It describes the independent and dependent process variables in view of their role in procedure development and process selection. The article includes information on independent process variables such as incident laser beam power and diameter, laser beam spatial distribution, traverse speed, shielding gas, depth of focus and focal position, weld design, and gap size. Dependent variables, including depth of penetration, microstructure and mechanical properties of laser-welded joints, and weld pool geometry, are discussed. The article also reviews the various injuries and electrical and chemical hazards associated with laser beam welding.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001370
EISBN: 978-1-62708-173-3
.... It provides information on the applications of microwelding with pulsed solid-state lasers. The article describes the modes of laser welding such as conduction-mode welding and deep-penetration-mode welding, as well as major independent process variables for laser welding, such as laser-beam power, laser-beam...
Abstract
Laser-beam welding (LBW) uses a moving high-density coherent optical energy source, called laser, as the source of heat. This article discusses the advantages and limitations of LBW and tabulates energy consumption and efficiency of LBW relative to other selected welding processes. It provides information on the applications of microwelding with pulsed solid-state lasers. The article describes the modes of laser welding such as conduction-mode welding and deep-penetration-mode welding, as well as major independent process variables for laser welding, such as laser-beam power, laser-beam diameter, absorptivity, and traverse speed. It concludes with information on various hazards associated with LBW, including electrical hazards, eye hazards, and chemical hazards.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001445
EISBN: 978-1-62708-173-3
... of the article “Laser-Beam Welding” in this Volume. Carbon dioxide (CO 2 ) lasers with up to 25 kW power capacities and pulsed Nd:YAG lasers with up to 500 W peak power have been the workhorse for the industry until recently. The majority of the CO 2 laser applications involve lasers up to 5 kW. Recently...
Abstract
Laser-beam welding (LBW) is a joining process that produces coalescence of material with the heat obtained from the application of a concentrated coherent light beam impinging upon the surface to be welded. This article describes the steps that must be considered when selecting the LBW process. It reviews the individual process variables that influence procedure development of the LBW process. Joint design and special practices related to LBW are discussed. The article concludes with a discussion on the use of consumables and special welding practices.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005627
EISBN: 978-1-62708-174-0
... welding electrons focused beam diameter high energy density electron welding keyhole-mode welding laser beam welding photons power density boundary HIGH ENERGY DENSITY BEAM WELDING refers to electron or laser processes where a beam of electrons or photons, respectively, can be focused to power...
Abstract
This article provides a history of electron and laser beam welding, discusses the properties of electrons and photons used for welding, and contrasts electron and laser beam welding. It presents a comparison of the electron and laser beam welding processes. The article also illustrates constant power density boundaries, showing the relationship between the focused beam diameter and the absorbed beam power for approximate regions of keyhole-mode welding, conduction-mode welding, cutting, and drilling.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006955
EISBN: 978-1-62708-439-0
... . Sample images are shown at Z = 22 and 26 mm (0.87 and 1.02 in.). (b) Two-dimensional Gaussian fit for a laser beam image Laser Power Control For a standard laser unit, the laser power is set by two voltage inputs: a digital input (DI) to turn the laser power on/off, and an analog input (AI...
Abstract
Part quality in additive manufacturing (AM) is highly dependent on process control, but there is a lack of adequate AM control methods and standards. Laser powder-bed fusion (L-PBF) is one of the most-used metal AM techniques. This article focuses on the following laser control parameters: laser focus, laser power, laser position, and laser power-position synchronization. It then provides a discussion on laser scan strategies. The article also provides an overview of the AM control framework, the two major sections of which are software and hardware.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006532
EISBN: 978-1-62708-207-5
... region have high average beam power, better beam quality, and efficiency. They are good for cutting thicker sections (>10 mm, or 0.4 in.) with high speed. The Nd:YAG laser is more suitable in the pulse mode, in which it gives high power that allows the fine cutting of metals at thicknesses...
Abstract
This article focuses on a variety of laser beam machining (LBM) operations of aluminum and its alloys, namely, laser cutting, laser drilling, laser milling, laser turning, laser grooving, laser scribing, laser marking, and laser micromachining. It presents different approaches for carrying out machining operations, laser processing parameters, efficiency and accuracy of the process, and the effect of laser processing parameters on the quality of the machined surface. The article provides an overview of the various conventional (chip forming) and nonconventional machining techniques employed for aluminum-based materials. A comparison of the various aspects of LBM with other non-conventional techniques is also presented. The article also describes the features of LBM techniques employed for aluminum and its alloys for different types of machining.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002168
EISBN: 978-1-62708-188-7
... second. Transverse-flow CO 2 lasers operate only in the CW mode, although the beam can be modulated with a beam chopper. Transverse-flow CO 2 lasers are used when compact medium-power lasers are needed or when high powers are required. Average powers range from 2500 to 15,000 W. Gas-Assisted...
Abstract
Laser beam machining removes, melts, or thermally modifies a material by focusing a coherent beam of monochromatic light on the workpiece. This article describes the principal lasers used in metal processing: neodymium-glass, carbon dioxide, and neodymium-doped yttrium aluminum garnet lasers. It discusses the operating parameters of concern in percussion drilling and trepanning. The process variables in surface treatment and laser cutting, as well as the operating parameters of concern in laser welding are reviewed. The article also explains the various categories of surface treatment: heat treating, cladding, surfacing, glazing, and marking.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005106
EISBN: 978-1-62708-186-3
... axial flow, transverse flow, and fast axial flow and reviews the applications of Nd:YAG laser. The article describes the basic parameters in the laser-cutting process: beam quality, power, travel speed, nozzles design, and focal-point position. Several material conditions that affect the quality...
Abstract
Cutting with lasers is accomplished with carbon dioxide (CO 2 ) and neodymium: yttrium-aluminum-garnet (Nd:YAG) lasers. This article provides a description of the process variables and principles of laser cutting. It discusses the three basic types of CO 2 gas lasers, namely, slow axial flow, transverse flow, and fast axial flow and reviews the applications of Nd:YAG laser. The article describes the basic parameters in the laser-cutting process: beam quality, power, travel speed, nozzles design, and focal-point position. Several material conditions that affect the quality of the laser cut are also discussed. The article provides information on the basic laser-cutting system and its optional equipment. A general description of how well each metal group can be cut is also provided.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005630
EISBN: 978-1-62708-174-0
... is the displacement off axis, and w is the laser spot size; units must be the same). This is also known as the 1/ e 2 profile. The designer must allow sufficient clear aperture for the power that resides outside the 1/ e 2 diameter of the calculated collimated beam diameter. Fig. 3 Output profiles...
Abstract
Properly designed beam-delivery optics is essential to quality of the beam acting on the workpiece and to the economics of the manufacturing process. This article describes the design considerations of laser beam delivery optics. It also reviews the manufacturing economics and presents two case studies of typical economic environments found in laser welding applications.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005600
EISBN: 978-1-62708-174-0
... are discussed in the section “Hybrid Laser Welding Parameters” in this article, while specific variables for the LBW process (discussed in other articles in this Volume) include: Laser power (typically from 200 W to 20 kW) Diameter of the focused laser beam (spot size typically 0.2 to 1 mm, or 0.008...
Abstract
Hybrid laser arc welding (HLAW) is a metal joining process that combines laser beam welding (LBW) and arc welding in the same weld pool. This article provides a discussion on the major process variables for two modes of operation of HLAW, namely, stabilization mode and penetration mode. The major process variables for either mode of operation include three sets of welding parameters: the variables for the independent LBW and gas metal arc welding processes and welding variables that are specific to the HLAW process. The article discusses the advantages, limitations, and applications of the HLAW and describes the major components and consumables used for HLAW. The components include the laser source, gas metal arc welding source, hybrid welding head, and motion system. The article also describes the typical sources of defects and safety concerns of HLAW.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005631
EISBN: 978-1-62708-174-0
..., and titanium alloys that are rivaled only by those made by electron beam welding. (See the articles in this Volume on electron beam welding.) Data describing the plate thickness of different laser-welded materials are given in Table 2 . Parameters for high-power laser beam welding relative to alloy type...
Abstract
This article describes the joint preparation, fit-up and design of various types of laser beam weld joints: butt joint, lap joint, flange joint, kissing weld, and wire joint. It explains the use of consumables for laser welding and highlights the special laser welding practices of steel, aluminum, and titanium engineering alloys. Laser weld quality and quality assessment are described with summaries of imperfections and how its operations contribute to providing repeatable and reliable laser welds. Relevant laser weld quality specifications are listed.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006545
EISBN: 978-1-62708-290-7
... to output power (light or accelerated electrons). While recent published figures are difficult to find, e-beam devices are quite efficient and can be assumed to have a wall-plug efficiency on the order of 70%. Today (2019), this percentage is still higher than for the most efficient fiber-laser systems...
Abstract
Fusion-based additive manufacturing (AM) processes rely on the formation of a metallurgical bond between a substrate and a feedstock material. Energy sources employed in the fusion AM process include conventional arcs, lasers, and electron beams. Each of these sources is discussed, with an emphasis on their principles of operation, key processing variables, and the influence of each source on the transfer of heat and material. Common energy sources used for metals AM processes, particularly powder-bed fusion and directed-energy deposition, are also discussed. Brief sections at the end of the article discuss the factors dictating the choice of each of these energy sources and provide information on alternative sources of AM.
1