Skip Nav Destination
Close Modal
Search Results for
laser-beam diameter
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 463 Search Results for
laser-beam diameter
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Methodologies and Implementation of Laser Powder-Bed Fusion Process Control
> Additive Manufacturing Design and Applications
Published: 30 June 2023
Fig. 3 Laser spot size calibration. (a) Laser beam D4σ diameter at different heights Z . Sample images are shown at Z = 22 and 26 mm (0.87 and 1.02 in.). (b) Two-dimensional Gaussian fit for a laser beam image
More
Image
Published: 01 November 1995
Fig. 22 Plot of energy versus beam diameter of a Gaussian mode laser beam used in laser beam machining of ceramics. (a) Recommended envelope to minimize thermal shock to workpiece. (b) Unacceptable envelope consisting of hot spots along periphery of the curve resulting in excessive heating
More
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006502
EISBN: 978-1-62708-207-5
... modes of laser welding: conduction-mode welding and deep-penetration mode welding. The article reviews the factors of process selection and procedure development for laser welding. The factors include power density, interaction time, laser beam power, laser beam diameter, laser beam spatial distribution...
Abstract
Most welding lasers fall into the category of fiber, disc, or direct diode, all of which can be delivered by fiber optic. This article provides a comparison of the energy consumptions and efficiencies of laser beam welding (LBW) with other major welding processes. It discusses the two modes of laser welding: conduction-mode welding and deep-penetration mode welding. The article reviews the factors of process selection and procedure development for laser welding. The factors include power density, interaction time, laser beam power, laser beam diameter, laser beam spatial distribution, absorptivity, traverse speed, laser welding efficiency, and plasma suppression and shielding gas. The article concludes with a discussion on laser cutting, laser roll welding, and hybrid laser welding.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001370
EISBN: 978-1-62708-173-3
... laser-beam diameter laser-beam power laser-beam welding microwelding pulsed solid-state laser traverse speed LASER-BEAM WELDING (LBW) uses a moving high-density (10 5 to 10 7 W/cm 2 , or 6 × 10 5 to 6 × 10 7 W/in. 2 ) coherent optical energy source called a laser as the source of heat...
Abstract
Laser-beam welding (LBW) uses a moving high-density coherent optical energy source, called laser, as the source of heat. This article discusses the advantages and limitations of LBW and tabulates energy consumption and efficiency of LBW relative to other selected welding processes. It provides information on the applications of microwelding with pulsed solid-state lasers. The article describes the modes of laser welding such as conduction-mode welding and deep-penetration-mode welding, as well as major independent process variables for laser welding, such as laser-beam power, laser-beam diameter, absorptivity, and traverse speed. It concludes with information on various hazards associated with LBW, including electrical hazards, eye hazards, and chemical hazards.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005641
EISBN: 978-1-62708-174-0
... information on independent process variables such as incident laser beam power and diameter, laser beam spatial distribution, traverse speed, shielding gas, depth of focus and focal position, weld design, and gap size. Dependent variables, including depth of penetration, microstructure and mechanical...
Abstract
This article provides an overview of the fundamentals, mechanisms, process physics, advantages, and limitations of laser beam welding. It describes the independent and dependent process variables in view of their role in procedure development and process selection. The article includes information on independent process variables such as incident laser beam power and diameter, laser beam spatial distribution, traverse speed, shielding gas, depth of focus and focal position, weld design, and gap size. Dependent variables, including depth of penetration, microstructure and mechanical properties of laser-welded joints, and weld pool geometry, are discussed. The article also reviews the various injuries and electrical and chemical hazards associated with laser beam welding.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001445
EISBN: 978-1-62708-173-3
... variables for laser welding include incident laser-beam power, incident laser-beam diameter, traverse speed, absorptivity, shielding gas, depth of focus and focal position, and weld design and gap size. The important dependent variables are depth of penetration, microstructure and mechanical properties...
Abstract
Laser-beam welding (LBW) is a joining process that produces coalescence of material with the heat obtained from the application of a concentrated coherent light beam impinging upon the surface to be welded. This article describes the steps that must be considered when selecting the LBW process. It reviews the individual process variables that influence procedure development of the LBW process. Joint design and special practices related to LBW are discussed. The article concludes with a discussion on the use of consumables and special welding practices.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005627
EISBN: 978-1-62708-174-0
... welding electrons focused beam diameter high energy density electron welding keyhole-mode welding laser beam welding photons power density boundary HIGH ENERGY DENSITY BEAM WELDING refers to electron or laser processes where a beam of electrons or photons, respectively, can be focused to power...
Abstract
This article provides a history of electron and laser beam welding, discusses the properties of electrons and photons used for welding, and contrasts electron and laser beam welding. It presents a comparison of the electron and laser beam welding processes. The article also illustrates constant power density boundaries, showing the relationship between the focused beam diameter and the absorbed beam power for approximate regions of keyhole-mode welding, conduction-mode welding, cutting, and drilling.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005630
EISBN: 978-1-62708-174-0
... energy. The core diameter is approximately 10 μm and the NA is typically 0.065. These specifications are taken from the laser under consideration for the job. Using the relationships from Table 1 , a fully corrected 60 mm collimator will produce a slightly less than 8 mm diameter beam. If a 120 mm focus...
Abstract
Properly designed beam-delivery optics is essential to quality of the beam acting on the workpiece and to the economics of the manufacturing process. This article describes the design considerations of laser beam delivery optics. It also reviews the manufacturing economics and presents two case studies of typical economic environments found in laser welding applications.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005639
EISBN: 978-1-62708-174-0
... diameter for visible and near-infrared wavelength lasers at ∼10 μm ( Ref 24 ). In the case of electron beams, high-quality SEM or electron probe microanalysis instruments routinely focus their probe beams to a diameter < 1 nm. The several-watt electron beams needed for microwelding cannot be focused...
Abstract
Microjoining with high energy density beams is a new subject in the sense that the progress of miniaturization in industry has made the desire to make microjoints rapidly and reliably a current and exciting topic. This article summarizes the current state of microjoining with both electron and laser beams. It considers the elementary physical processes such as heat and fluid flow to introduce the reader to the phenomena that affect melting, coalescence, and solidification needed for a successful microweld. The various forces driving (and resisting) fluid flow are analyzed. The article discusses the equipment suitable for microjoining and the metallurgical consequences and postweld metrology of the process. It also provides examples of developmental welds employing laser and electron beam microwelding techniques.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005618
EISBN: 978-1-62708-174-0
... small size of the focused beam spot on the workpiece, typically 0.25 to 0.50 mm (0.010 to 0.020 in.) in diameter, such as for multikilowatt lasers for macrofabrication. The width of the kerf is of the same order of magnitude as the diameter of the beam spot on the workpiece. Consequently, the benefits...
Abstract
Laser has found its applications in cutting, drilling, and shock-peening operations of manufacturing industry because of its accurate, safe, and rapid cutting property. This article provides an account on the fundamental principles of laser cutting (thermal), drilling, and shock-peening processes of which emphasis is placed on thermal laser cutting. It details the principal set-up parameters, such as the laser beam output, nozzle design, focusing optic position and characteristics, assist gases, surface conditions, and cutting speed. A discussion on the types of gas, supply system, purity level, and flow rates of lasing and assist gases is also provided. The article also describes the metallurgies and other key material considerations that impact laser-cutting performances and includes examples of laser cutting of nonmetal materials.
Image
Published: 31 October 2011
silicon film less than 200 μm thick requires lasers to drill holes with diameters as small as 30 μm at a rate of 20,000 holes per second. A galvano-scanner mirror enables the synchronization of high-speed, high-acceleration positioning of the laser beam with high-rate beam pulsing. The hole shown is 60 μm
More
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002168
EISBN: 978-1-62708-188-7
... the laser beam on the workpiece surface. Short focal length lenses provide small focus spot sizes and high power density. Long focal length lenses provide narrow beam convergence angles, which are necessary to penetrate thick metal sections. Initial beam diameter is an important consideration in lens...
Abstract
Laser beam machining removes, melts, or thermally modifies a material by focusing a coherent beam of monochromatic light on the workpiece. This article describes the principal lasers used in metal processing: neodymium-glass, carbon dioxide, and neodymium-doped yttrium aluminum garnet lasers. It discusses the operating parameters of concern in percussion drilling and trepanning. The process variables in surface treatment and laser cutting, as well as the operating parameters of concern in laser welding are reviewed. The article also explains the various categories of surface treatment: heat treating, cladding, surfacing, glazing, and marking.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005600
EISBN: 978-1-62708-174-0
... applications. Because of the small focal spot diameter of the laser beam, thick-section butt joints with a gap exceeding 1 mm (0.039 in.) are difficult to weld with the HLAW process. Due to the low heat input and fast cooling rates produced by HLAW, mechanical properties of the as-welded condition may...
Abstract
Hybrid laser arc welding (HLAW) is a metal joining process that combines laser beam welding (LBW) and arc welding in the same weld pool. This article provides a discussion on the major process variables for two modes of operation of HLAW, namely, stabilization mode and penetration mode. The major process variables for either mode of operation include three sets of welding parameters: the variables for the independent LBW and gas metal arc welding processes and welding variables that are specific to the HLAW process. The article discusses the advantages, limitations, and applications of the HLAW and describes the major components and consumables used for HLAW. The components include the laser source, gas metal arc welding source, hybrid welding head, and motion system. The article also describes the typical sources of defects and safety concerns of HLAW.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006546
EISBN: 978-1-62708-290-7
... ) ( h l ) [ C ( T m − T b ) + L f ] / ( 1 − R ) where P l is the required laser power, p is the powder density, D b is the laser beam diameter, h l is the layer height, C is the specific heat of the polymer, T m is the polymer melting temperature, T b...
Abstract
This article focuses on four industrial additive manufacturing approaches that are used to create polymer parts. The first section focuses on material extrusion, providing information on lumped-parameter material flow models and higher-fidelity models developed to estimate temperature distribution. The second section covers polymer powder-bed sintering/ fusion, discussing the different levels of scale used to address modeling and the impact of process settings: thermodynamics at the powder-bed surface, consolidation of adjacent particles in the fusion process, and fusion and molecular-level behavior within particles. The third section on vat photopolymerization (VPP) discusses two primary approaches to modeling VPP processes, namely a lumped-parameter approach to estimate cured regions in the vat, known as the Jacobs model, and a high-fidelity, continuum approach that uses finite-element methods. The final section is devoted to material jetting, focusing on simulations used to study droplet generation at the nozzle and droplet impact.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006490
EISBN: 978-1-62708-207-5
... to produce butt, lap, fillet, and lap-fillet welds in 3.0 mm (0.12 in.) thick 6013-T4 for conventional laser beam welding (LBW) and laser stir welding (LSW) Process Joint type Weld velocity Wire feed speed Circle diameter Rotational velocity, rpm m/min ft/min m/min ft/min mm in. LBW...
Abstract
Although laser stir welding (LSW) is applied to various metallic systems, it is especially appropriate to laser beam welding (LBW) of aluminum, because liquid aluminum possesses significantly less surface tension and viscosity than most common metal alloys, which results in greater fluidity of the molten pool. This article schematically illustrates the keyhole instability in LBW and describes the process details of LSW. Representative macrographs of butt, lap, and fillet welds produced using the LBW and LSW processes are presented. The article discusses the laser welding technologies having a large impact on the ability to apply LSW in production. It concludes with information on the industrial applications of LSW.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006532
EISBN: 978-1-62708-207-5
... is the focal length. Thus, for a thinner workpiece, minimum focal length is used which provides a decreased spot diameter and a narrow kerf width. The gas jet nozzle system is used to prevent debris from entering back into the laser beam focusing end effector (nozzle) during machining. The design of the nozzle...
Abstract
This article focuses on a variety of laser beam machining (LBM) operations of aluminum and its alloys, namely, laser cutting, laser drilling, laser milling, laser turning, laser grooving, laser scribing, laser marking, and laser micromachining. It presents different approaches for carrying out machining operations, laser processing parameters, efficiency and accuracy of the process, and the effect of laser processing parameters on the quality of the machined surface. The article provides an overview of the various conventional (chip forming) and nonconventional machining techniques employed for aluminum-based materials. A comparison of the various aspects of LBM with other non-conventional techniques is also presented. The article also describes the features of LBM techniques employed for aluminum and its alloys for different types of machining.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001398
EISBN: 978-1-62708-173-3
.... These figures are approximate, because the presence of fluxes and activators reduces the reflection factor. However, the Nd:YAG laser, when used for soldering, is more efficient. In a blind system, the coordinates of the target, the power of the laser, the diameter of the beam at its focal point...
Abstract
Laser soldering uses a well-focused, highly controlled beam to deliver energy to a desired location for a precisely measured length of time. This article focuses on two types of laser soldering operations, namely, blind laser soldering and intelligent laser soldering. It discusses the function of the blind laser soldering and provides a brief description on key attributes of the blind laser soldering, including repeatability, speed, quality, safety, and flexibility. The article explores the function of the intelligent laser soldering and concludes with a section on key attributes of the intelligent laser soldering. The key attributes of the intelligent laser soldering include repeatability, speed, quality, safety, cost, and flexibility.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005631
EISBN: 978-1-62708-174-0
... welding) are suitable for laser beam welding (LBW). However, it must be remembered that the laser beam is focused to a spot of a few hundred micrometers in diameter, and thus, fit-up tolerances and alignment requirements are also of that order of magnitude. As with fusion welding processes, joints...
Abstract
This article describes the joint preparation, fit-up and design of various types of laser beam weld joints: butt joint, lap joint, flange joint, kissing weld, and wire joint. It explains the use of consumables for laser welding and highlights the special laser welding practices of steel, aluminum, and titanium engineering alloys. Laser weld quality and quality assessment are described with summaries of imperfections and how its operations contribute to providing repeatable and reliable laser welds. Relevant laser weld quality specifications are listed.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005106
EISBN: 978-1-62708-186-3
... of the laser. Lens Choice Lens choice is based on metal thickness, composition, and quality requirements and on beam diameter. Wider kerf widths are obtained by using longer focal-length lenses, and some materials, such as aluminum, require a larger kerf width for good results. The following guidelines...
Abstract
Cutting with lasers is accomplished with carbon dioxide (CO 2 ) and neodymium: yttrium-aluminum-garnet (Nd:YAG) lasers. This article provides a description of the process variables and principles of laser cutting. It discusses the three basic types of CO 2 gas lasers, namely, slow axial flow, transverse flow, and fast axial flow and reviews the applications of Nd:YAG laser. The article describes the basic parameters in the laser-cutting process: beam quality, power, travel speed, nozzles design, and focal-point position. Several material conditions that affect the quality of the laser cut are also discussed. The article provides information on the basic laser-cutting system and its optional equipment. A general description of how well each metal group can be cut is also provided.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003042
EISBN: 978-1-62708-200-6
... for cutting for two reasons: They produce large amounts of power in the form of light and they produce this light in parallel beams that can be focused to small spots. Focusing Laser Beams A CO 2 laser with an output of 1500 W generally emits a beam about 20 mm (0.8 in.) in diameter. The power density...
Abstract
This article describes the use of conventional machining techniques, laser cutting and water-jet cutting for producing finished composite parts. It explains two representative polymer-matrix composites--graphite and aramid composites--and discusses the machining and drilling problems such as delamination and fiber or resin pullout. The article describes machining and drilling techniques and the necessary tools and cutting parameters. It presents a description of laser cutting. The article also provides information on the advantages, disadvantages, cutting characteristics, and applications of water-jet cutting and abrasive water-jet cutting.
1