Skip Nav Destination
Close Modal
By
Dongbin Wei, Wenzhen Xia, Zhengyi Jiang, Liang Hao
By
Sameehan S. Joshi, Narendra B. Dahotre
By
Soundarapandian Santhanakrishnan, Narendra B. Dahotre
By
Michael J. Schneider, Madhu S. Chatterjee
By
Tharun Reddy, William Frieden Templeton, Sneha P. Narra
By
J. Mazumder
By
Joy Gockel
By
Zhaohui Geng, Bopaya Bidanda
By
Virginia Osterman
By
S. Wu, Y.M. Zhu, A.J. Huang
By
Carelyn E. Campbell, Mark R. Stoudt, Fan Zhang
By
Nicholas Ury, Samad Firdosy, Vilupanur Ravi
Search Results for
laser surface treatment
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 598
Search Results for laser surface treatment
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Lubrication and Wear in Rolling
Available to PurchaseSeries: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006422
EISBN: 978-1-62708-192-4
..., adhesion, and fatigue, as well as oxidative and corrosive wear. Surface modification techniques, such as hardening by induction heat treating, weld overlay, thermal spray coating, coating via physical vapor deposition (PVD), and laser surface treatment, are also discussed for improving roll service life...
Abstract
Rolling is the process of reducing the thickness or changing the cross section of a workpiece by compressive forces applied through a set of rolls. This article emphasizes flat rolling and illustrates basic flat-rolling process used to reduce the thickness of a rectangular cross section. It provides a discussion on hot rolling, cold rolling, and warm rolling, as well as lubrication in rolling. The article reviews the lubrication for iron-base and nickel-base materials, light metals, copper-base alloys, and titanium alloys. It discusses the wear mechanism in rolling: abrasion, adhesion, and fatigue, as well as oxidative and corrosive wear. Surface modification techniques, such as hardening by induction heat treating, weld overlay, thermal spray coating, coating via physical vapor deposition (PVD), and laser surface treatment, are also discussed for improving roll service life.
Book Chapter
Laser Surface Engineering for Tribology
Available to PurchaseSeries: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006421
EISBN: 978-1-62708-192-4
... ). The variety of lasing media available can generate laser beams of various wavelengths and unique characteristics. Applications include bar code readers, fiber optics communication, fast, precision machining of of materials, and surface heat treatment and engineering of structural materials. Important...
Abstract
Lasers evolved as a versatile materials processing tool due to their advantages such as rapid, reproducible processing, chemical cleanliness, ability to handle variety of materials, and suitability for automation. This article focuses on state-of-the-art laser applications to improve tribological performance of structural materials in lubricated and nonlubricated environments. It discusses the fundamentals of various laser materials interactions and reviews laser-based surface-modification strategies, including laser surface heating and melting, laser-synthesized coatings, and laser-based design approaches such as laser patterning and dimpling. Laser-surface modification of novel materials, such as high-entropy alloys and metallic glasses, is explored. The article provides an overview of hybrid techniques involving laser as a secondary tool, as well as a discussion on the improved capabilities of laser surface engineering for tribological applications by means of integrated computational process modeling.
Book Chapter
Laser Surface Hardening
Available to PurchaseSeries: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005808
EISBN: 978-1-62708-165-8
... heat treatment, laser surface melting such as skin melting or glazing, laser direct metal deposition such as cladding, alloying, and hardfacing, laser physical vapor deposition, and laser shock peening. The article provides detailed information on absorptivity, laser scanning technology...
Abstract
Laser surface hardening is a noncontact process that provides a chemically inert and clean environment as well as flexible integration with operating systems. This article provides a brief discussion on the various conventional surface-modification techniques to enhance the surface and mechanical properties of ferrous and nonferrous alloys. The techniques are physical vapor deposition, chemical vapor deposition, sputtering, ion plating, electroplating, electroless plating, and displacement plating. The article describes five categories of laser surface modification, namely, laser surface heat treatment, laser surface melting such as skin melting or glazing, laser direct metal deposition such as cladding, alloying, and hardfacing, laser physical vapor deposition, and laser shock peening. The article provides detailed information on absorptivity, laser scanning technology, and thermokinetic phase transformations. It also describes the influence of cooling rate on laser heat treatment and the effect of processing parameters on temperature, microstructure, and case depth hardness.
Book Chapter
Friction and Wear of Titanium Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006436
EISBN: 978-1-62708-192-4
... ). Fig. 6 Wear test results for untreated and plasma-nitrided Ti-6Al-4V. Source: Ref 18 Laser Surface Treatments Laser surface heating and introduction of hard particles into the surface via reaction with gas (such as nitrogen or methane) or heating of surface deposits (graphite or boron...
Abstract
This article describes the surface modification treatments used to modify the tribological properties of titanium alloys. These include physical vapor deposition and thermochemical conversion treatments. The physical vapor deposition includes ion implantation, sputtering, evaporation, and ion plating surface modification treatments. The thermochemical conversion surface treatments include nitriding, carburizing, boriding, and solid lubrication.
Book Chapter
Introduction to Surface Hardening of Steels
Available to PurchaseSeries: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005771
EISBN: 978-1-62708-165-8
.... For details, see the article “Induction Surface Hardening of Steels” in this Volume. Laser Surface Heat Treatment Laser surface heat treatment is widely used to harden localized areas of steel and cast iron machine components. This process is sometimes referred to as laser transformation hardening...
Abstract
Surface hardening improves the wear resistance of steel parts. This article focuses exclusively on the methods that involve surface and subsurface modification without any intentional buildup or increase in part dimensions. These include diffusion methods, such as carburizing, nitriding, carbonitriding, and austenitic and ferritic nitrocarburizing, as well as selective-hardening methods, such as laser transformation hardening, electron beam hardening, ion implantation, selective carburizing, and surface hardening with arc lamps. The article also discusses the factors affecting the choice of these surface-hardening methods.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003681
EISBN: 978-1-62708-182-5
... examples include: The intergranular corrosion resistance of Al 6013-T651 was improved by excimer laser surface treatment in nitrogen atmosphere, resulting in formation of AlN ( Ref 69 ). The pitting corrosion resistance of Ti-6Al-4V alloy (UNS R56400/R56401) was improved by excimer laser surface...
Abstract
Surface modification is the alteration of the surface composition or structure using energy or particle beams. This article discusses two different surface modification methods. The first, ion implantation, is the introduction of ionized species into the substrate using kilovolt to megavolt ion accelerating potentials. The second method, laser processing, is high-power laser melting with or without mixing of materials precoated on the substrate, followed by rapid melt quenching. The article also describes the advantages and disadvantages of the surface modification approach to promote corrosion resistance.
Book Chapter
Effects of Process-Induced Defects on Fatigue Properties of Laser Powder Bed Fusion Metallic Materials
Available to PurchaseSeries: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006985
EISBN: 978-1-62708-439-0
... intended for safety-critical structural applications (i.e., applications where part failure causes system failure and injury to users). Process-induced defects, surface roughness, microstructure, residual stress, and postprocessing procedures such as heat treatments and surface finishing can all affect...
Abstract
Fatigue failure is a critical performance metric for additively manufactured (AM) metal parts, especially those intended for safety-critical structural applications (i.e., applications where part failure causes system failure and injury to users). This article discusses some of the common defects that occur in laser powder bed fusion (L-PBF) components, mitigation strategies, and their impact on fatigue failure. It summarizes the fatigue properties of three commonly studied structural alloys, namely aluminum alloy, titanium alloy, and nickel-base superalloy.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002168
EISBN: 978-1-62708-188-7
... lasers. It discusses the operating parameters of concern in percussion drilling and trepanning. The process variables in surface treatment and laser cutting, as well as the operating parameters of concern in laser welding are reviewed. The article also explains the various categories of surface treatment...
Abstract
Laser beam machining removes, melts, or thermally modifies a material by focusing a coherent beam of monochromatic light on the workpiece. This article describes the principal lasers used in metal processing: neodymium-glass, carbon dioxide, and neodymium-doped yttrium aluminum garnet lasers. It discusses the operating parameters of concern in percussion drilling and trepanning. The process variables in surface treatment and laser cutting, as well as the operating parameters of concern in laser welding are reviewed. The article also explains the various categories of surface treatment: heat treating, cladding, surfacing, glazing, and marking.
Book Chapter
Medical Applications of Stainless Steels
Available to PurchaseSeries: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005673
EISBN: 978-1-62708-198-6
... of nitric and hydrofluoric acids (HNO 3 -HF), to remove oxides formed in heat treatment. Once the surface is cleaned and the bulk composition of the stainless steel is exposed to air, the passive film forms immediately. Passivation Techniques During handling and processing operations...
Abstract
Stainless steels are used for medical implants and surgical tools due to the excellent combination of properties, such as cost, strength, corrosion resistance, and ease of cleaning. This article describes the classifications of stainless steels, such as austenitic stainless steels, martensitic stainless steels, ferritic stainless steels, precipitation-hardening stainless steels, and duplex stainless steels. It contains a table that lists common medical device applications for stainless steels. The article discusses the physical metallurgy and physical and mechanical properties of stainless steels. Medical device considerations for stainless steels, such as fatigue strength, corrosion resistance, and passivation techniques, are reviewed. The article explains the process features of implant-grade stainless steels, including type 316L, type 316LVM, nitrogen-strengthened, ASTM F1314, ASTM F1586, ASTM F2229, and ASTM F2581 stainless steels.
Book Chapter
Procedure Development and Practice Considerations for Laser-Beam Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001445
EISBN: 978-1-62708-173-3
.... , Laser Focus , Feb 1976 , p 44 15. Alexander J. , “Penetration Studies in Laser and Arc Augmented Laser Welding,” Ph.D. thesis, London University, 1982 16. Duley W.W. , “Laser Surface Treatment of Metals,” Draper C.W. and Mazzoldi P. , Ed., NATO ASI Series E...
Abstract
Laser-beam welding (LBW) is a joining process that produces coalescence of material with the heat obtained from the application of a concentrated coherent light beam impinging upon the surface to be welded. This article describes the steps that must be considered when selecting the LBW process. It reviews the individual process variables that influence procedure development of the LBW process. Joint design and special practices related to LBW are discussed. The article concludes with a discussion on the use of consumables and special welding practices.
Book Chapter
Structure-Properties Relationships in Metal Additive Manufacturing
Available to PurchaseSeries: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006990
EISBN: 978-1-62708-439-0
... by the microstructure but are also affected by porosity and surface roughness. Fatigue failure in AM materials is also influenced by porosity, surface roughness, microstructure, and residual stress due to applied manufacturing processing parameters. Post-processing treatments can further influence fatigue failure in AM...
Abstract
Structure-property relationships for metal additive manufacturing (AM) using solidification-based AM processes (e.g., powder-bed fusion and directed-energy deposition) are the focus of this article. Static strength and ductility properties in AM materials are impacted heavily by the microstructure but are also affected by porosity and surface roughness. Fatigue failure in AM materials is also influenced by porosity, surface roughness, microstructure, and residual stress due to applied manufacturing processing parameters. Post-processing treatments can further influence fatigue failure in AM materials.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001303
EISBN: 978-1-62708-170-2
... Abstract This article provides a brief review of the classification and characteristics of cast irons. It describes the processes used to clean iron castings, including mechanical cleaning and finishing and nonmechanical cleaning. The article discusses surface treatments used to extend casting...
Abstract
This article provides a brief review of the classification and characteristics of cast irons. It describes the processes used to clean iron castings, including mechanical cleaning and finishing and nonmechanical cleaning. The article discusses surface treatments used to extend casting life when resistance to corrosion, wear, and erosion is required. The common methods include electroplating, electroless plating, hardfacing, weld cladding, surface hardening, porcelain enameling, and organic coatings.
Image
Temperature as a function of time for various laser processing conditions a...
Available to PurchasePublished: 31 December 2017
Fig. 45 Temperature as a function of time for various laser processing conditions as predicted by thermal modeling during laser surface heat treatment of a metallic glass. Source: Ref 22
More
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006853
EISBN: 978-1-62708-392-8
.... Laser Treatment In contrast with sandblasting and acid etching techniques, laser treatment exerts zero risk of surface contamination, because there is no direct contact between the laser and the biomaterial ( Ref 51 ). Laser surface treatments also tend to improve material wettability by altering...
Abstract
One of the most frequently cited advantages of ceramics in dentistry relates to aesthetics, and the same applies for dental implants. Zirconia has emerged as the material of choice for nonmetal implants. This article introduces the reader to zirconia as an implant material, its properties, manufacturing processes, and the particular surface modifications and treatments that have rendered its surfaces biologically compatible with peri-implant soft and hard tissues.
Book Chapter
Additively Manufactured Dentures, Crowns, and Bridges
Available to PurchaseSeries: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006899
EISBN: 978-1-62708-392-8
... is rough compared with the parts produced by machining processes. Therefore, a polishing step may be needed to provide a smooth surface texture. In addition, heat treatment may be required to increase the part density for better mechanical properties in metal printing processes. The final step...
Abstract
Additive manufacturing (AM), also referred to as three-dimensional printing or rapid prototyping, is a set of technologies that has rapidly evolved and has drawn much research attention in the manufacturing of high value-added products. This article focuses on dentistry, one of the fields in which AM has gained much traction. It discusses the AM processes used to produce dentures, crowns, and bridges. Digitization techniques, which are the first step and provide the CAD model for AM processes, are presented. Scanning technologies that are widely used in dental manufacturing are presented in detail, and the strengths and weaknesses of each process within their applications are discussed. AM processes are discussed in detail, and the materials that are widely used in AM-embedded dental manufacturing are briefly surveyed. The final section concludes with remarks and a preview of future research and practice directions.
Book Chapter
Vacuum Heat Treating Additively Manufactured Parts
Available to PurchaseSeries: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006561
EISBN: 978-1-62708-290-7
... ). Because the build plate is routinely reused, it can also develop stresses, and, therefore, it must be creep flattened by placing weighted blocks on it during the stress-relief treatment ( Fig. 3b ). Fig. 2 Illustration of the effect of a stress-relief heat treatment on strain in laser-melted iron...
Abstract
This article focuses on various vacuum heat treating processes for additively manufactured parts, namely annealing and stress relieving, solid-solution annealing, and solution treating and aging. It addresses several practical concerns involved in using vacuum heat treatment, including temperature measurement, unvented cavities, loose powder, and direct contact of metals in the high-temperature vacuum. The article provides a short discussion on sintering and evaporation of metals in vacuum furnaces.
Book Chapter
Creep Performance of Additively Manufactured Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006964
EISBN: 978-1-62708-439-0
... Abstract This article briefly introduces the concept of creep properties of additively manufactured (AM) alloys, with a focus on the effects of the characteristic microstructure of AM alloys on creep performance. Relevant postprocessing treatment also is discussed, in relation to improved creep...
Abstract
This article briefly introduces the concept of creep properties of additively manufactured (AM) alloys, with a focus on the effects of the characteristic microstructure of AM alloys on creep performance. Relevant postprocessing treatment also is discussed, in relation to improved creep performance based on the improvement of AM initial microstructure.
Book Chapter
Additive Manufacturing of Steels and Stainless Steels
Available to PurchaseSeries: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006566
EISBN: 978-1-62708-290-7
... ). Average cooling rates can vary significantly depending on the type of AM process. For example, in laser-assisted directed-energy deposition (L-DED) of 316L stainless steel, the cooling rate is reported to be approximately 10 3 K/s ( Ref 36 ), because the focused laser beam and the build surface...
Abstract
This article provides a general overview of additively manufactured steels and focuses on specific challenges and opportunities associated with additive manufacturing (AM) stainless steels. It briefly reviews the classification of the different types of steels, the most common AM processes used for steel, and available powder feedstock characteristics. The article emphasizes the characteristics of the as-built microstructure, including porosity, inclusions, and residual stresses. It also reviews the material properties of AM steel parts, including hardness, tensile strength, and fatigue strength, as well as environmental properties with respect to corrosion resistance, highlighting the importance of postbuild thermal processing.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005707
EISBN: 978-1-62708-171-9
... (carburizing, nitriding, and boriding) surface modifications, electrochemical treatments (electroplating, and anodizing), chemical treatments (electroless plating, phosphating, and hot dip coating), hardfacing, and thermal spray processes. It provides information on chemical and physical vapor deposition...
Abstract
Coatings and other surface modifications are used for a variety of functional, economic, and aesthetic purposes. Two major applications of thermal spray coatings are for wear resistance and corrosion resistance. This article discusses thermal (surface hardening) and thermochemical (carburizing, nitriding, and boriding) surface modifications, electrochemical treatments (electroplating, and anodizing), chemical treatments (electroless plating, phosphating, and hot dip coating), hardfacing, and thermal spray processes. It provides information on chemical and physical vapor deposition techniques such as conventional CVD, laser-assisted CVD, cathodic arc deposition, molecular beam epitaxy, ion plating, and sputtering.
Book Chapter
Additive Manufacturing of Stainless Steel Biomedical Devices
Available to PurchaseSeries: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006888
EISBN: 978-1-62708-392-8
... than titanium and cobalt alloys, both in conventional and AM processes ( Ref 20 , 22 ). With surface treatments or coatings (e.g., hydroxyapatite), the biocompatibility and corrosion resistance of stainless steels can be improved, with potential cost-benefit advantages relative to titanium and cobalt...
Abstract
Metallic alloys that are typically used for medical purposes include stainless steels, Ti-6Al-4V, and Co-Cr-Mo. This article discusses the relative merits of each of these alloys. The utilization of stainless steels in the biomedical industry, especially in relation to the additive manufacturing (AM) process, is the main focus of this article. The characteristics of various stainless steels are described subsequently, and the categories that are of relevance to the biomedical industry are identified. The types of stainless steels covered are austenitic, ferritic, martensitic, duplex, and precipitation-hardened stainless steels. The article discusses the potential benefits of AM for biomedical devices. It describes the types of AM processes for stainless steels, namely binder jet, directed-energy deposition, and laser powder-bed fusion. The article reviews the AM of austenitic, martensitic, and PH stainless steels for biomedical applications. In addition, the challenges and obstacles to the clinical use of AM parts are covered.
1