1-20 of 819

Search Results for laser surface processing

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 August 2013
Fig. 9 Operational regimes for laser surface processing of steels More
Image
Published: 12 September 2022
Fig. 6 Processing-structure-property evolution during laser surface modification of bioimplant alloys More
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001305
EISBN: 978-1-62708-170-2
... and laser surface processing. Surface hardening techniques, namely, nitriding, carburizing, boriding, and flame hardening, performed to improve the resistance of stainless steel alloys are also reviewed. acid cleaning acid descaling alkaline cleaning boriding buffing carburizing electrocleaning...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003681
EISBN: 978-1-62708-182-5
... to megavolt ion accelerating potentials. The second method, laser processing, is high-power laser melting with or without mixing of materials precoated on the substrate, followed by rapid melt quenching. The article also describes the advantages and disadvantages of the surface modification approach...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001303
EISBN: 978-1-62708-170-2
... electroless plating electroplating erosion resistance finishing flame hardening fused dry-resin coatings gray iron hardfacing hot dip coating induction hardening iron castings laser surface processing mechanical cleaning non-mechanical cleaning organic coatings pearlitic malleable iron...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006885
EISBN: 978-1-62708-392-8
... of the layer-by-layer fusion-based DED process. A brief overview of the primary governing equations, boundary conditions, and numerical methods prescribed for modeling laser-based metal AM is then presented. Next, the article discusses fundamental concepts related to laser surface melting and laser-assisted...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006421
EISBN: 978-1-62708-192-4
... capabilities of laser surface engineering for tribological applications by means of integrated computational process modeling. chemical cleanliness laser surface heating laser surface melting laser patterning laser dimpling laser-synthesized coatings lubricated environment nonlubricated...
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002168
EISBN: 978-1-62708-188-7
... lasers. It discusses the operating parameters of concern in percussion drilling and trepanning. The process variables in surface treatment and laser cutting, as well as the operating parameters of concern in laser welding are reviewed. The article also explains the various categories of surface treatment...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006532
EISBN: 978-1-62708-207-5
... for carrying out machining operations, laser processing parameters, efficiency and accuracy of the process, and the effect of laser processing parameters on the quality of the machined surface. The article provides an overview of the various conventional (chip forming) and nonconventional machining techniques...
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005808
EISBN: 978-1-62708-165-8
... Abstract Laser surface hardening is a noncontact process that provides a chemically inert and clean environment as well as flexible integration with operating systems. This article provides a brief discussion on the various conventional surface-modification techniques to enhance the surface...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006502
EISBN: 978-1-62708-207-5
..., workpiece surface (roughness, oxidation, cleanliness), workpiece properties, fixturing and tooling Because laser welding is a high-energy-density process, the system requirements for quality and consistency are greater than with GMAW (MIG welding). Process Selection Laser beam welding...
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006985
EISBN: 978-1-62708-439-0
... procedures such as hot isostatic pressing and surface finishing (e.g., machining and peening). Internal Defects Lack-of-fusion defects occur when unfused powder becomes trapped between layers of a part. An example of process parameter errors that cause lack-of-fusion defects includes low laser power...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006563
EISBN: 978-1-62708-290-7
.... ( Ref 55 ) investigated direct laser sintering of silica sand for the casting industry. The build process using a CO 2 laser is shown in Fig. 2 . Fig. 2 Flowchart of casting process using direct CO 2 laser sintering of silica sand to build the mold. Source: Ref 16 The surface...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005641
EISBN: 978-1-62708-174-0
... of the turbulence generated by laser vaporization. In this process, a large vortex is formed behind the cavity near the weld surface. This vortex is considered to be the cause of the so-called “wine-glass” beads that are produced by the process. The transport of material is mainly due to flow in the liquid...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006564
EISBN: 978-1-62708-290-7
... Thermal monitoring methods are based on measuring the thermal radiation emitted from the build surface and using this radiation to determine the quality of the process or the part being built. Laser and e-beam PBF are dynamic processes with large and rapid changes in temperature. Thermal monitoring...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006570
EISBN: 978-1-62708-290-7
... manufactured parts Table 2 Surface roughness of additively manufactured parts ASTM Nomenclature Process name Minimum layer thickness, μm Surface finish, Ra, μm Vat photopolymerization Stereo lithography 10 2–40 Powder bed fusion Selective laser sintering 125 5–35 Material...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006581
EISBN: 978-1-62708-290-7
... as wire-fed laser beam. They reported that the morphology of the porosity for EBPB and LBPB differed significantly. The LBPB-processed material exhibited irregular-shaped pores, whereas the porosity of the EBPB-produced alloys was spherical. They concluded that surface defects had the most pronounced...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005680
EISBN: 978-1-62708-198-6
... laser welding medical devices microjoining microresistance spot welding nitinol microscopic forceps pacemaker radioactive seed implant MICROJOINING METHODS are commonly used to fabricate medical components and devices. Various materials processing techniques, including welding and joining...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006557
EISBN: 978-1-62708-290-7
... on the build surface and forms a molten pool. The absorption energy depends on beam characteristics, deposit geometry, and shielding gas. For a laser-assisted DED process with argon shielding gas, the absorption coefficient for a laser beam with a 1064 nm wavelength remains between 0.3 and 0.7, depending...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006556
EISBN: 978-1-62708-290-7
... ( Ref 44 ) that the technology used by fcubic (now known to be the binder jet process, and now owned by Digital Metal, a Höganäs Group company) produces considerably superior surface finishes compared to laser processing. Additionally, it was reported that fcubic had an active program to develop...