Skip Nav Destination
Close Modal
By
Mohan Sai Kiran Kumar Yadav Nartu, Shashank Sharma, Srinivas Aditya Mantri, Sameehan S. Joshi, Mangesh V. Pantawane ...
Search Results for
laser surface melting
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 579
Search Results for laser surface melting
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2003
Fig. 14 Dendritic solidification in laser-surface-melted type 304 stainless steel. (a) Surface replica of a polished-and-etched cross section. (b) Scanning electron micrograph of the free surface
More
Image
Published: 31 December 2017
Fig. 15 (a) micrograph of laser-surface melted AZ31 B Mg-base alloy (Mg-3Al-1Zn) showing melt zone and the base, (b) wear behavior of untreated and laser-melted AZ31 B and AZ61 B (Mg-6Al-1Zn) Mg-base alloys, and (c) worn surface of laser-treated AZ31 B alloy. Source: Ref 66
More
Image
Published: 12 September 2022
Fig. 9 Weight-loss behavior of a laser-surface-melted alloy compared with an untreated Mg-Gd-Ca alloy immersed in Hank’s balanced salt solution for 14 days. Source: Ref 69
More
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005808
EISBN: 978-1-62708-165-8
... heat treatment, laser surface melting such as skin melting or glazing, laser direct metal deposition such as cladding, alloying, and hardfacing, laser physical vapor deposition, and laser shock peening. The article provides detailed information on absorptivity, laser scanning technology...
Abstract
Laser surface hardening is a noncontact process that provides a chemically inert and clean environment as well as flexible integration with operating systems. This article provides a brief discussion on the various conventional surface-modification techniques to enhance the surface and mechanical properties of ferrous and nonferrous alloys. The techniques are physical vapor deposition, chemical vapor deposition, sputtering, ion plating, electroplating, electroless plating, and displacement plating. The article describes five categories of laser surface modification, namely, laser surface heat treatment, laser surface melting such as skin melting or glazing, laser direct metal deposition such as cladding, alloying, and hardfacing, laser physical vapor deposition, and laser shock peening. The article provides detailed information on absorptivity, laser scanning technology, and thermokinetic phase transformations. It also describes the influence of cooling rate on laser heat treatment and the effect of processing parameters on temperature, microstructure, and case depth hardness.
Book Chapter
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006885
EISBN: 978-1-62708-392-8
... of the layer-by-layer fusion-based DED process. A brief overview of the primary governing equations, boundary conditions, and numerical methods prescribed for modeling laser-based metal AM is then presented. Next, the article discusses fundamental concepts related to laser surface melting and laser-assisted...
Abstract
This article focuses on the directed-energy deposition (DED) additive manufacturing (AM) technique of biomedical alloys. First, it provides an overview of the DED process. This is followed by a section describing the design and development of the multiphysics computational modeling of the layer-by-layer fusion-based DED process. A brief overview of the primary governing equations, boundary conditions, and numerical methods prescribed for modeling laser-based metal AM is then presented. Next, the article discusses fundamental concepts related to laser surface melting and laser-assisted bioceramic coatings/composites on implant surfaces, with particular examples related to biomedical magnesium and titanium alloys. It then provides a review of the processes involved in DED of biomedical stainless steels, Co-Cr-Mo alloys, and biomedical titanium alloys. Further, the article covers novel applications of DED for titanium-base biomedical implants. It concludes with a section on the forecast of DED in biomedical applications.
Image
Published: 01 January 1994
Fig. 15 Cross section of laser-melted cast iron surfaces. (a) Gray iron. (b) Ductile iron. Source: Ref 13
More
Image
Published: 01 January 2003
Fig. 8 View of laser-melted surface and temperature profiles experienced at different points on the surface during laser melting. Liquidus ( T L ), solidus ( T S ), and solid-state transformation ( T R ) temperatures are indicated.
More
Image
Published: 15 June 2020
Fig. 6 Comparison of the surfaces of laser-melted cobalt-chromium and a copper alloy build. Source: Ref 30. Reprinted by permission from The Santa Fe Symposium on Jewelry Manufacturing Technology
More
Image
in Failures Related to Metal Additive Manufacturing
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 20 Fracture surfaces of tensile tests from as-built selective-laser-melted Ti-6Al-4V specimens. (a) Cup-and-cone. (b) Dimples. (c) and (d) Quasi-cleavage facets. Source: Ref 26 , 42
More
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006421
EISBN: 978-1-62708-192-4
... tribological performance of structural materials in lubricated and nonlubricated environments. It discusses the fundamentals of various laser materials interactions and reviews laser-based surface-modification strategies, including laser surface heating and melting, laser-synthesized coatings, and laser-based...
Abstract
Lasers evolved as a versatile materials processing tool due to their advantages such as rapid, reproducible processing, chemical cleanliness, ability to handle variety of materials, and suitability for automation. This article focuses on state-of-the-art laser applications to improve tribological performance of structural materials in lubricated and nonlubricated environments. It discusses the fundamentals of various laser materials interactions and reviews laser-based surface-modification strategies, including laser surface heating and melting, laser-synthesized coatings, and laser-based design approaches such as laser patterning and dimpling. Laser-surface modification of novel materials, such as high-entropy alloys and metallic glasses, is explored. The article provides an overview of hybrid techniques involving laser as a secondary tool, as well as a discussion on the improved capabilities of laser surface engineering for tribological applications by means of integrated computational process modeling.
Image
Published: 12 September 2022
Fig. 8 Variation in surface roughness and contact angle in simulated body fluid (SBF) as a function of laser fluence for laser-surface-melted AZ31B magnesium alloy. Source: Ref 46
More
Image
Published: 12 September 2022
Fig. 7 Set of micrographs showing electron backscatter diffraction results for laser-surface-melted AZ31B magnesium alloy, (a) to (c) top surface, (d) to (f) cross section. Source: Ref 46
More
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003681
EISBN: 978-1-62708-182-5
... to megavolt ion accelerating potentials. The second method, laser processing, is high-power laser melting with or without mixing of materials precoated on the substrate, followed by rapid melt quenching. The article also describes the advantages and disadvantages of the surface modification approach...
Abstract
Surface modification is the alteration of the surface composition or structure using energy or particle beams. This article discusses two different surface modification methods. The first, ion implantation, is the introduction of ionized species into the substrate using kilovolt to megavolt ion accelerating potentials. The second method, laser processing, is high-power laser melting with or without mixing of materials precoated on the substrate, followed by rapid melt quenching. The article also describes the advantages and disadvantages of the surface modification approach to promote corrosion resistance.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006563
EISBN: 978-1-62708-290-7
... preheat and low viscosity of the melt, which outflows into the surrounding powder bed. Better surface quality can be achieved without preheating, but the mechanical strength of the parts is limited ( Ref 68 ). In biomedical research, Liu ( Ref 69 ) used direct laser sintering on a hydroxyapatite (HA...
Abstract
This article focuses on powder bed fusion (PBF) of ceramics, which has the potential to fabricate functional ceramic parts directly without any binders or post-sintering steps. It presents the results of three oxide ceramic materials, namely silica, zirconia, and alumina, processed using PBF techniques. The article discusses the challenges encountered during PBF of ceramics, including nonuniform ceramic powder layer deposition, laser and powder particle interactions, melting and consolidation mechanisms, optimization of process parameters, and presence of residual stresses in ceramics after processing. The applications of PBF ceramics are also discussed.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005771
EISBN: 978-1-62708-165-8
... to differentiate it from laser surface melting phenomena ( Fig. 9 ). There is no chemistry change produced by laser transformation hardening, and the process, like induction and flame hardening, provides an effective technique to harden ferrous materials selectively. Other methods of laser surface treatments...
Abstract
Surface hardening improves the wear resistance of steel parts. This article focuses exclusively on the methods that involve surface and subsurface modification without any intentional buildup or increase in part dimensions. These include diffusion methods, such as carburizing, nitriding, carbonitriding, and austenitic and ferritic nitrocarburizing, as well as selective-hardening methods, such as laser transformation hardening, electron beam hardening, ion implantation, selective carburizing, and surface hardening with arc lamps. The article also discusses the factors affecting the choice of these surface-hardening methods.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002168
EISBN: 978-1-62708-188-7
... Abstract Laser beam machining removes, melts, or thermally modifies a material by focusing a coherent beam of monochromatic light on the workpiece. This article describes the principal lasers used in metal processing: neodymium-glass, carbon dioxide, and neodymium-doped yttrium aluminum garnet...
Abstract
Laser beam machining removes, melts, or thermally modifies a material by focusing a coherent beam of monochromatic light on the workpiece. This article describes the principal lasers used in metal processing: neodymium-glass, carbon dioxide, and neodymium-doped yttrium aluminum garnet lasers. It discusses the operating parameters of concern in percussion drilling and trepanning. The process variables in surface treatment and laser cutting, as well as the operating parameters of concern in laser welding are reviewed. The article also explains the various categories of surface treatment: heat treating, cladding, surfacing, glazing, and marking.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006564
EISBN: 978-1-62708-290-7
... devices and monitoring of the welding process. A commercial welding inspection system was installed in a custom laser PBF machine ( Ref 20 ). The SD-OCT probe beam travels through the same scanning optics as the process laser. After melting each layer, the part surface is rescanned using the SD-OCT...
Abstract
This article covers in-line process monitoring of the metal additive manufacturing (AM) methods of laser and electron beam (e-beam) powder-bed fusion (PBF) and directed-energy deposition (DED). It focuses on methods that monitor the component directly throughout the build process. This article is organized by the type of AM process and by the physics of the monitoring method. The discussion covers two types of monitoring possible with the PBF process: monitoring the area of the powder bed and component and monitoring the melt pool created by the laser or e-beam. Methods for layer monitoring include optical and thermal methods that monitor light reflected or emitted in the visible and infrared wavelengths, respectively. Monitoring methods for laser directed-energy deposition (DED) discussed are those that measure the size and shape of the melt pool, the temperature of the melt pool, and the plasma generated by the laser as it interacts with the molten metal.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006556
EISBN: 978-1-62708-290-7
... is needed, because pores detract from the visual appearance of a polished surface. Achieving acceptable surface qualities on the laser-melted parts was a challenge for gold and silver alloys. This drove a considerable research effort for those involved in laser melting in the jewelry industry. Zito et...
Abstract
The additive manufacturing technologies in the casting of precious metals are divided into two groups: indirect metal methods and direct metal methods. Besides providing a process overview of both of these methods, the focus of this article is on the characteristics, process steps, applications, and advantages of direct metal methods, namely laser melting, material extrusion, binder jetting, material jetting, and vat photopolymerization methods.
Book Chapter
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006581
EISBN: 978-1-62708-290-7
... on the fatigue life of electron-beam-melted (EBM) and laser-beam-melted (LBM) Ti-6Al-4V using Arcam and EOS systems, respectively. They employed a three-point bend test with a maximum surface stress of 600 MPa (87 ksi) and a stress ratio, R , of 0.1. They found that the fatigue life of rolled Ti-6Al-4V > LBM...
Abstract
Titanium alloys are known for their high-temperature strength, good fracture resistance, low specific gravity, and excellent resistance to corrosion. Ti-6Al-4V is the most commonly used titanium alloy in the aerospace, aircraft, automotive, and biomedical industries. This article discusses various additive manufacturing (AM) technologies for processing titanium and its alloys. These include directed-energy deposition (DED), powder-bed fusion (PBF), and sheet lamination. The discussion covers the effect of AM on the microstructures of the materials deposited, static and mechanical properties, and fatigue strength and fracture toughness of Ti-6Al-4V.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006972
EISBN: 978-1-62708-439-0
... surface roughness is maximum ( Ref 64 ). Laser power directly influences surface roughness, with lower laser powers resulting in more partially melted, sintered powder along surfaces. Another contributor to surface roughness is due to the so-called stairstep effect. This is a combined result of using...
Abstract
This article presents a general understanding of causes and possible solutions for defects in the most common metal additive manufacturing (AM) processes: laser powder-bed fusion (L-PBF), laser directed-energy deposition (DED-L), and binder jetting (BJ).
1