Skip Nav Destination
Close Modal
Search Results for
laser surface heating
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 725 Search Results for
laser surface heating
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006421
EISBN: 978-1-62708-192-4
... tribological performance of structural materials in lubricated and nonlubricated environments. It discusses the fundamentals of various laser materials interactions and reviews laser-based surface-modification strategies, including laser surface heating and melting, laser-synthesized coatings, and laser-based...
Abstract
Lasers evolved as a versatile materials processing tool due to their advantages such as rapid, reproducible processing, chemical cleanliness, ability to handle variety of materials, and suitability for automation. This article focuses on state-of-the-art laser applications to improve tribological performance of structural materials in lubricated and nonlubricated environments. It discusses the fundamentals of various laser materials interactions and reviews laser-based surface-modification strategies, including laser surface heating and melting, laser-synthesized coatings, and laser-based design approaches such as laser patterning and dimpling. Laser-surface modification of novel materials, such as high-entropy alloys and metallic glasses, is explored. The article provides an overview of hybrid techniques involving laser as a secondary tool, as well as a discussion on the improved capabilities of laser surface engineering for tribological applications by means of integrated computational process modeling.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005808
EISBN: 978-1-62708-165-8
... heat treatment, laser surface melting such as skin melting or glazing, laser direct metal deposition such as cladding, alloying, and hardfacing, laser physical vapor deposition, and laser shock peening. The article provides detailed information on absorptivity, laser scanning technology...
Abstract
Laser surface hardening is a noncontact process that provides a chemically inert and clean environment as well as flexible integration with operating systems. This article provides a brief discussion on the various conventional surface-modification techniques to enhance the surface and mechanical properties of ferrous and nonferrous alloys. The techniques are physical vapor deposition, chemical vapor deposition, sputtering, ion plating, electroplating, electroless plating, and displacement plating. The article describes five categories of laser surface modification, namely, laser surface heat treatment, laser surface melting such as skin melting or glazing, laser direct metal deposition such as cladding, alloying, and hardfacing, laser physical vapor deposition, and laser shock peening. The article provides detailed information on absorptivity, laser scanning technology, and thermokinetic phase transformations. It also describes the influence of cooling rate on laser heat treatment and the effect of processing parameters on temperature, microstructure, and case depth hardness.
Image
Published: 31 December 2017
Fig. 45 Temperature as a function of time for various laser processing conditions as predicted by thermal modeling during laser surface heat treatment of a metallic glass. Source: Ref 22
More
Image
Published: 01 January 1994
Fig. 8 Cross sections of laser heat-treated surfaces in cast irons. (a) Gray iron. (b) Ductile iron. Source: Ref 13
More
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005771
EISBN: 978-1-62708-165-8
.... For details, see the article “Induction Surface Hardening of Steels” in this Volume. Laser Surface Heat Treatment Laser surface heat treatment is widely used to harden localized areas of steel and cast iron machine components. This process is sometimes referred to as laser transformation hardening...
Abstract
Surface hardening improves the wear resistance of steel parts. This article focuses exclusively on the methods that involve surface and subsurface modification without any intentional buildup or increase in part dimensions. These include diffusion methods, such as carburizing, nitriding, carbonitriding, and austenitic and ferritic nitrocarburizing, as well as selective-hardening methods, such as laser transformation hardening, electron beam hardening, ion implantation, selective carburizing, and surface hardening with arc lamps. The article a