1-20 of 411 Search Results for

laser surface hardening

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005808
EISBN: 978-1-62708-165-8
... Abstract Laser surface hardening is a noncontact process that provides a chemically inert and clean environment as well as flexible integration with operating systems. This article provides a brief discussion on the various conventional surface-modification techniques to enhance the surface...
Image
Published: 01 August 2013
Fig. 1 Laser surface-hardening techniques More
Image
Published: 01 August 2013
Fig. 8 Localized laser surface hardening industrial components More
Image
Published: 01 January 1994
Fig. 14 Hardness profile of laser surface hardened cast iron camlobe. Source: Ref 18 More
Image
Published: 01 January 1994
Fig. 11 Erosive wear behavior of laser-hardened cast irons as a function of surface hardness and case depth. (a) Gray iron. (b) Ductile iron. Source: Ref 13 More
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003200
EISBN: 978-1-62708-199-3
... Abstract This article discusses the fundamentals and applications of localized heat treating methods: induction hardening and tempering, laser surface transformation hardening, and electron-beam heat treatment. The article provides information about equipment and describes the selection...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006421
EISBN: 978-1-62708-192-4
... and optimization play a key role in achieving the required depth of martensite formation and hardening. Furthermore, in conventional hardening, the component also undergoes a secondary tempering heat treatment required to reduce the brittleness of the martensite phase. In the case of laser surface heating...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001303
EISBN: 978-1-62708-170-2
... electroless plating electroplating erosion resistance finishing flame hardening fused dry-resin coatings gray iron hardfacing hot dip coating induction hardening iron castings laser surface processing mechanical cleaning non-mechanical cleaning organic coatings pearlitic malleable iron...
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005771
EISBN: 978-1-62708-165-8
..., nitriding, carbonitriding, and austenitic and ferritic nitrocarburizing, as well as selective-hardening methods, such as laser transformation hardening, electron beam hardening, ion implantation, selective carburizing, and surface hardening with arc lamps. The article also discusses the factors affecting...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005673
EISBN: 978-1-62708-198-6
..., martensitic stainless steels, ferritic stainless steels, precipitation-hardening stainless steels, and duplex stainless steels. It contains a table that lists common medical device applications for stainless steels. The article discusses the physical metallurgy and physical and mechanical properties...
Image
Published: 31 December 2017
Fig. 13 (a) Temperature increase as a function of time for laser-treated - nodular cast iron surface, and (b) in the depth of the workpiece material (a) and depths of the melted zone (z m ) and hardened zone (z a ) based on temperature achieved. Source: Ref 47 More
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006576
EISBN: 978-1-62708-290-7
... Abstract This article provides a brief overview of additive manufacturing (AM) of tool steels via various AM technologies such as laser powder bed fusion, electron powder bed fusion, blown powder directed energy deposition, and binder jet AM. The discussion includes process overview and covers...
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005936
EISBN: 978-1-62708-166-5
... of residual stress—by inhomogeneous plastic deformations that automatically cause shape changes as well. From the process point of view, thermal surface-hardening techniques such as laser or induction hardening allow a simultaneous achievement of the preferred surface near component properties; however...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006296
EISBN: 978-1-62708-179-5
... to achieve maximum softness and machinability Normalizing: cooling the casting in air to obtain higher hardness and strength Through hardening: heating, quenching, and tempering to provide the highest possible hardness and strength Surface hardening: flame, induction, or laser heating...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005707
EISBN: 978-1-62708-171-9
... gas also aids in the rapid quenching necessary for the hardening process. Laser Heating When component distortion due to overheating is a concern, solid-state transformation hardening by lasers can be employed. The laser beam interacts with the surface of a material to a depth dependent...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003681
EISBN: 978-1-62708-182-5
... of modification to be done (for example, transformation hardening or surface alloying) and the properties of the material that are being treated (for example, thermal diffusivity, heat capacity, and transformation temperatures). Figure 4 shows typical ranges of conditions for various processes. The laser power...
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002168
EISBN: 978-1-62708-188-7
... lasers. It discusses the operating parameters of concern in percussion drilling and trepanning. The process variables in surface treatment and laser cutting, as well as the operating parameters of concern in laser welding are reviewed. The article also explains the various categories of surface treatment...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005945
EISBN: 978-1-62708-168-9
... to achieve maximum softness and machinability Normalizing : Cooling the casting in air to obtain higher hardness and strength Through hardening : Heating, quenching, and tempering to provide the highest possible hardness and strength Surface hardening : Flame, induction, or laser heating...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001305
EISBN: 978-1-62708-170-2
... and laser surface processing. Surface hardening techniques, namely, nitriding, carburizing, boriding, and flame hardening, performed to improve the resistance of stainless steel alloys are also reviewed. acid cleaning acid descaling alkaline cleaning boriding buffing carburizing electrocleaning...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006309
EISBN: 978-1-62708-179-5
... criteria: to produce solidified white iron throughout the section thickness; and to produce the desired graphite distribution (nodule count) upon annealing. It describes the induction heating and quenching or flame heating and quenching for surface hardening of fully pearlitic malleable iron. Laser...