1-20 of 337 Search Results for

laser roll welding

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005620
EISBN: 978-1-62708-174-0
... Abstract This article describes two methods based on rolling of sheet. The first is roll welding, where two or more sheets or plates are stacked together and then passed through rolls until sufficient deformation has occurred to produce solid-state welds. The other is laser roll welding, which...
Image
Published: 31 October 2011
Fig. 5 Laser roll welding. (a) Schematic of laser roll welding process with aluminum and steel sheet. (b) Using a 2 kW fiber laser More
Image
Published: 30 November 2018
Fig. 11 Laser roll welding. (a) Schematic of laser roll welding process with aluminum and steel sheet. (b) Using a 2 kW fiber laser More
Image
Published: 31 October 2011
Fig. 6 Process parameter for laser roll welding. IMC, intermetallic compound More
Image
Published: 31 October 2011
Fig. 9 Macrostructure samples from joints after laser roll welding of low-carbon steel sheet (JIS-SPCC) with (a) A1050 aluminum and (b) aluminum-magnesium alloy A5052. Laser power, welding speed, and roll pressure were: (a) 1.5 kW, 1.5 m/min (4.9 ft/min), and 150 MPa (22 ksi) for A1050, and (b More
Image
Published: 31 October 2011
Fig. 14 Tensile shear specimens from steel-titanium joint after laser roll welding. (a) Failure at interface. (b) Failure in base metal of SPCC More
Image
Published: 30 November 2018
Fig. 12 Process parameters for laser roll welding. IMC, intermetallic compound More
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006502
EISBN: 978-1-62708-207-5
..., absorptivity, traverse speed, laser welding efficiency, and plasma suppression and shielding gas. The article concludes with a discussion on laser cutting, laser roll welding, and hybrid laser welding. aluminum alloys laser beam welding porosity laser cutting laser roll welding hybrid laser welding...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001365
EISBN: 978-1-62708-173-3
..., reinforced roll spot welding, and leak-tight seam welding. It provides information on the applications of lap seam weld, mash seam weld, and butt seam weld. The article reviews the advantages and limitations of seam welding compared to resistance spot welding, projection welding, and laser welding...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006422
EISBN: 978-1-62708-192-4
..., adhesion, and fatigue, as well as oxidative and corrosive wear. Surface modification techniques, such as hardening by induction heat treating, weld overlay, thermal spray coating, coating via physical vapor deposition (PVD), and laser surface treatment, are also discussed for improving roll service life...
Book Chapter

Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005126
EISBN: 978-1-62708-186-3
... machines, tooling, and auxiliary equipment used in contour roll forming and its process variables. Tooling used in roll forming includes forming rolls and dies for punching and cutting off the material. The article discusses the additional tooling required in tube mills to weld, size, and straighten...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005552
EISBN: 978-1-62708-174-0
...; and fusion welding with directed energy sources, such as laser welding, electron beam welding. The article reviews the different types of nonfusion welding processes, regardless of the particular energy source, which is usually mechanical but can be chemical, and related subprocesses of brazing and soldering...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005600
EISBN: 978-1-62708-174-0
... Abstract Hybrid laser arc welding (HLAW) is a metal joining process that combines laser beam welding (LBW) and arc welding in the same weld pool. This article provides a discussion on the major process variables for two modes of operation of HLAW, namely, stabilization mode and penetration mode...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005572
EISBN: 978-1-62708-174-0
... positive; DCEN, direct current electrode negative. Courtesy of Edison Welding Institute Hybrid laser GMAW is a process variation in which laser beam delivery optics are integrated with a GMAW gun. Higher productivities are possible than conventional GMAW, as the laser beam provides added penetration...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005744
EISBN: 978-1-62708-171-9
... of the laser-engraved surface. Source: Ref 1 Plate and Blanket Cylinders These items are used on web presses (offset printing) and frequently suffer attack from corrosive inks. Historically, these rolls have been fabricated from solid stainless steel or with stainless steel weld overlays...
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005800
EISBN: 978-1-62708-165-8
... the parameters associated with resistance spot welding, laser welding, and metal active gas welding. It also provides useful information of retained austenite volume fraction measured by x-ray diffraction and electron backscatter diffraction. The article also examines microstructure evolution during tensile...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003208
EISBN: 978-1-62708-199-3
... Abstract This article discusses the principles of operation, equipment needed, applications, and advantages and disadvantages of various fusion welding processes, namely, oxyfuel gas welding, electron beam welding, stud welding, laser beam welding, percussion welding, high-frequency welding...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005680
EISBN: 978-1-62708-198-6
... welding (MRSW) and laser welding. The article illustrates the fundamental principles involved in MRSW and laser welding. The article presents examples of various microjoining methods used in medical device applications, including pacemaker and nitinol microscopic forceps. fabrication joint design...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005631
EISBN: 978-1-62708-174-0
... Abstract This article describes the joint preparation, fit-up and design of various types of laser beam weld joints: butt joint, lap joint, flange joint, kissing weld, and wire joint. It explains the use of consumables for laser welding and highlights the special laser welding practices...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003179
EISBN: 978-1-62708-199-3
... Stainless steel alloys are also readily cut using a laser. The feed rates are reduced, however, because these alloys do not react as effectively with oxygen as carbon steel alloys do. An inert assist gas may be used to obtain a weld-ready edge, free of all oxides, at the expense of about one-half the oxygen...