1-20 of 269 Search Results for

laser beam weld joints

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005631
EISBN: 978-1-62708-174-0
... Abstract This article describes the joint preparation, fit-up and design of various types of laser beam weld joints: butt joint, lap joint, flange joint, kissing weld, and wire joint. It explains the use of consumables for laser welding and highlights the special laser welding practices...
Image
Published: 31 October 2011
Fig. 2 Joint designs for laser beam welds on wire. Arrows show direction of laser beam. (a) Butt weld. (b) Round-to-round lap weld. (c) Cross-joint weld. (d) Spot weld for T-joint. (e) Terminal or lug weld More
Image
Published: 01 January 1993
Fig. 10 Joint designs for laser-beam welds on wire. Arrows show direction of laser beam. (a) Butt weld. (b) Round-to-round lap weld. (c) Cross-joint weld. (d) Spot weld for T-joint. (e) Terminal or lug weld More
Image
Published: 30 November 2018
Fig. 8 Joint designs for laser beam welds on wire. Arrows show direction of laser beam. (a) Butt weld. (b) Round-to-round lap weld. (c) Cross-joint weld. (d) Spot weld for T-joint. (e) Terminal or lug weld More
Image
Published: 31 October 2011
Fig. 1 Joint designs for laser beam welds on sheet metal. Arrows show direction of laser beam. Source: Ref 1 More
Image
Published: 01 January 1993
Fig. 9 Joint designs for laser-beam welds on sheet metal. Arrows show direction of laser beam. Source: Ref 23 More
Image
Published: 30 November 2018
Fig. 7 Joint designs for laser beam welds on sheet metal. Arrows show direction of laser beam. Source: Ref 20 More
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006502
EISBN: 978-1-62708-207-5
... displacement of the molten metal upward along the walls of the hole. If no motion is introduced, all the metal is vaporized and a hole is “pierced” through the material. By moving the laser beam along the weld joint, material is melted in the front half of the beam, with material solidifying along the trailing...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001445
EISBN: 978-1-62708-173-3
... process. It reviews the individual process variables that influence procedure development of the LBW process. Joint design and special practices related to LBW are discussed. The article concludes with a discussion on the use of consumables and special welding practices. joint design laser-beam...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005600
EISBN: 978-1-62708-174-0
... gas metal arc welding source hybrid laser arc welding hybrid welding head and motion system inspection joint design laser beam welding laser source metal joining penetration mode quality control safety concerns stabilization mode weld pool welding consumables welding parameters...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006490
EISBN: 978-1-62708-207-5
... that laser beam welds produced on aluminum alloys using the LSW process displayed less weld defects when compared to traditional LBW, along with concomitant benefits of increased size of the weld to accommodate gaps, enlarged interfacial weld width and improved shear strength of lap joints, enhanced ability...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005641
EISBN: 978-1-62708-174-0
... properties of laser-welded joints, and weld pool geometry, are discussed. The article also reviews the various injuries and electrical and chemical hazards associated with laser beam welding. chemical hazards depth of focus depth of penetration diameter electrical hazards focal position gap size...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005638
EISBN: 978-1-62708-174-0
... is introduced, all the metal is vaporized and a hole is “pierced” through the steel with no further action taking place. The laser beam is simply passing through the steel. By moving the laser beam along the weld joint, material is melted in the front half of the beam, with material solidifying along...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003785
EISBN: 978-1-62708-177-1
... joints, highlighting important details such as solidification and solid-state transformation structures and what they reveal about the welding process. Besides arc welding, it also discusses laser and electron beam welding methods, resistance and spot welding, and the welding of dissimilar metals...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005129
EISBN: 978-1-62708-186-3
... usually involves cup tests, dome tests, or hydraulic-bulge testing performed on randomly selected samples. The laser beam tailor-welded blank has a butt-welded joint with a slight concavity at the joint with a narrower (about 1.0 mm, or 0.04 in.) heat-affected zone. Minimizing concavity of the weld...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001421
EISBN: 978-1-62708-173-3
.... This article provides a detailed discussion on weldability and the effect of viscosity, chemical reactions, and solidification on weldability. It discusses different welding processes, namely, gas-tungsten arc welding, gas-metal arc welding, laser-beam welding, electron-beam welding, resistance welding...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005552
EISBN: 978-1-62708-174-0
... (that is, high-quality) weld joints rivaled only by those made with an electron beam. Laser welding offers the following advantages: Light is inertialess (hence, high processing speeds with very rapid stopping and starting become possible). Focused laser light provides high energy density. Laser...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006510
EISBN: 978-1-62708-207-5
..., and susceptibility to solidification cracking and liquation cracking. It provides an overview on welding processes, including gas metal arc welding, gas tungsten arc welding, resistance spot and seam welding, laser beam welding, and various solid-state welding processes. A review on joint design is also included...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005615
EISBN: 978-1-62708-174-0
... welding. Advantages are described in terms of welding near heat sensitive components or materials and producing deep penetration or shallow welds with the same equipment. dissimilar metals electron beam welding electron beam welding machines joint design process control weld geometry...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005630
EISBN: 978-1-62708-174-0
... manufacture. The company relies on several job shops to provide electron beam, laser beam, and manual tungsten inert gas welding. All but one of the weld joints occur at subassembly stages so that the scheduling and transportation of the components is critical to the manufacturing process. The company's...