1-20 of 390 Search Results for

laser beam weld design

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005631
EISBN: 978-1-62708-174-0
... Abstract This article describes the joint preparation, fit-up and design of various types of laser beam weld joints: butt joint, lap joint, flange joint, kissing weld, and wire joint. It explains the use of consumables for laser welding and highlights the special laser welding practices...
Image
Published: 01 January 1993
Fig. 10 Joint designs for laser-beam welds on wire. Arrows show direction of laser beam. (a) Butt weld. (b) Round-to-round lap weld. (c) Cross-joint weld. (d) Spot weld for T-joint. (e) Terminal or lug weld More
Image
Published: 30 November 2018
Fig. 8 Joint designs for laser beam welds on wire. Arrows show direction of laser beam. (a) Butt weld. (b) Round-to-round lap weld. (c) Cross-joint weld. (d) Spot weld for T-joint. (e) Terminal or lug weld More
Image
Published: 31 October 2011
Fig. 2 Joint designs for laser beam welds on wire. Arrows show direction of laser beam. (a) Butt weld. (b) Round-to-round lap weld. (c) Cross-joint weld. (d) Spot weld for T-joint. (e) Terminal or lug weld More
Image
Published: 01 January 1993
Fig. 9 Joint designs for laser-beam welds on sheet metal. Arrows show direction of laser beam. Source: Ref 23 More
Image
Published: 30 November 2018
Fig. 7 Joint designs for laser beam welds on sheet metal. Arrows show direction of laser beam. Source: Ref 20 More
Image
Published: 31 October 2011
Fig. 1 Joint designs for laser beam welds on sheet metal. Arrows show direction of laser beam. Source: Ref 1 More
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006502
EISBN: 978-1-62708-207-5
... is the selection of optimum independent and dependent processes. The independent process variables for laser welding include incident laser beam power, incident laser beam diameter, traverse speed, absorptivity, shielding gas, depth of focus and focal position, and weld design and gap size. The important dependent...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005630
EISBN: 978-1-62708-174-0
... two case studies of typical economic environments found in laser welding applications. design considerations laser beam delivery optics laser welding applications manufacturing economics reflective lens transmissive lens LASER ENERGY is transmitted from the laser to the workpiece via...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001445
EISBN: 978-1-62708-173-3
... process. It reviews the individual process variables that influence procedure development of the LBW process. Joint design and special practices related to LBW are discussed. The article concludes with a discussion on the use of consumables and special welding practices. joint design laser-beam...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005641
EISBN: 978-1-62708-174-0
... information on independent process variables such as incident laser beam power and diameter, laser beam spatial distribution, traverse speed, shielding gas, depth of focus and focal position, weld design, and gap size. Dependent variables, including depth of penetration, microstructure and mechanical...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005600
EISBN: 978-1-62708-174-0
... gas metal arc welding source hybrid laser arc welding hybrid welding head and motion system inspection joint design laser beam welding laser source metal joining penetration mode quality control safety concerns stabilization mode weld pool welding consumables welding parameters...
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002168
EISBN: 978-1-62708-188-7
... Laser Beam Machining Gas-assisted laser beam machining ( Fig. 1 ) may be used in cutting, welding, and heat-treating operations. The gas type can be oxygen, inert gas, or air, depending on material type and quality requirements. The gas device is designed to produce either a columnar or diffuse...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001467
EISBN: 978-1-62708-173-3
..., namely, gas-tungsten arc welding, gas-metal arc welding, electron-beam and laser-beam welding, resistance welding, furnace brazing, friction welding, and explosion welding. alumina electron-beam welding explosion welding friction welding furnace brazing gas-metal arc welding gas-tungsten arc...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005129
EISBN: 978-1-62708-186-3
..., inasmuch as it does not satisfy the requirements for outer surfaces. Both filler wire and beam weaving are used to reduce the need for precision shearing and to allow laser welding of multipiece, multiweld blanks in a one fixture setup. By using die-cut blanks without precision shearing before each weld...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001370
EISBN: 978-1-62708-173-3
... beam power Incident laser beam diameter Absorptivity Traverse speed of the laser beam across the substrate surface Parameters such as weld design, shielding gas, gap size for butt welds, and depth of focus with respect to the substrate also play important roles. These parameters...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001465
EISBN: 978-1-62708-173-3
... of welding technology in space are also discussed. electron-beam welding gas-tungsten arc welding laser-beam welding space and low-gravity environments welding WELDING AS AN ASSEMBLY PROCESS has become increasingly more attractive to designers of space structures for the same reasons welding...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006510
EISBN: 978-1-62708-207-5
..., and susceptibility to solidification cracking and liquation cracking. It provides an overview on welding processes, including gas metal arc welding, gas tungsten arc welding, resistance spot and seam welding, laser beam welding, and various solid-state welding processes. A review on joint design is also included...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005627
EISBN: 978-1-62708-174-0
... Abstract This article provides a history of electron and laser beam welding, discusses the properties of electrons and photons used for welding, and contrasts electron and laser beam welding. It presents a comparison of the electron and laser beam welding processes. The article also illustrates...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005615
EISBN: 978-1-62708-174-0
... welding. Advantages are described in terms of welding near heat sensitive components or materials and producing deep penetration or shallow welds with the same equipment. dissimilar metals electron beam welding electron beam welding machines joint design process control weld geometry...