Skip Nav Destination
Close Modal
Search Results for
laser annealing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 350 Search Results for
laser annealing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 15 June 2020
Fig. 23 Results of high-cycle fatigue tests for Ti-6Al-4V alloy representing smooth and notched specimens taken from (a) stress-relieved laser-based directed-energy deposition material in the z -orientation and (b) mill-annealed plate. LENS, laser-engineered net shaping. Source: Ref 51
More
Image
Published: 15 June 2020
phases generally have a less potent negative influence on conductivity. Aging Cu-Ni and Cu-Cr alloys balances strength and conductivity. Specific heat treatments annotated in the legend are as follows: (a) 2 h hot isostatic pressing under argon at 1075 °C (1965 °F) and 206.4 MPa (29.9 ksi). (b) Annealed
More
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005800
EISBN: 978-1-62708-165-8
... testing at different strain levels using electron backscatter diffraction. annealing chemical composition forming heat treatment laser welding mechanical properties microstructure phase transformation quenching resistance spot welding retained austenite transformation steel strain...
Abstract
Quenching and partitioning (Q&P) steel is a term used to describe a series of C-Si-Mn, C-Si-Mn-Al, or other steels subjected to the quenching and partitioning heat treatment process. This article discusses the Q&P steel's chemical compositions and mechanical properties, and provides an overview of the important background and product characteristics with a focus on the automotive sheet steel application. It schematically represents the continuous annealing process, consequent phase-transformation behaviors, and forming-limit curves of Q&P steels. The article describes the parameters associated with resistance spot welding, laser welding, and metal active gas welding. It also provides useful information of retained austenite volume fraction measured by x-ray diffraction and electron backscatter diffraction. The article also examines microstructure evolution during tensile testing at different strain levels using electron backscatter diffraction.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006309
EISBN: 978-1-62708-179-5
... criteria: to produce solidified white iron throughout the section thickness; and to produce the desired graphite distribution (nodule count) upon annealing. It describes the induction heating and quenching or flame heating and quenching for surface hardening of fully pearlitic malleable iron. Laser...
Abstract
Malleable iron is a type of cast iron that has most of its carbon in the form of irregularly shaped graphite nodules instead of flakes, as in gray iron, or small graphite spherulites, as in ductile iron. This article discusses the production of malleable iron based on the metallurgical criteria: to produce solidified white iron throughout the section thickness; and to produce the desired graphite distribution (nodule count) upon annealing. It describes the induction heating and quenching or flame heating and quenching for surface hardening of fully pearlitic malleable iron. Laser and electron beam techniques also have been used for hardening selected areas on the surface of pearlitic and ferritic malleable iron castings that are free from decarburization.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001113
EISBN: 978-1-62708-162-7
... ablation required a post anneal, but high-quality in situ films are now available from laser ablation ( Ref 13 , 25 , 26 ) with J c = 4 × 10 6 to 5 × 10 6 A/cm 2 . Substrate temperatures as low as 400 °C (750 °F) without post annealing resulted ( Ref 27 ) in the R = 0 point, where R...
Abstract
This article focuses on different thin-film deposition techniques used to make superconducting films and discusses the properties and advantages of high-critical-temperature and low-critical-temperature materials in a number of applications, including signal processing and analog electronic devices. The article gives a brief introduction on superconducting materials, substrates and buffer layers and discusses the major deposition techniques such as, electron-beam co-evaporation, sputtering from either a composite target or multiple sources and laser ablation. The article also describes the in-situ film growth techniques for producing atomic oxygen by radio frequency excitation or microwave discharge or with ozone.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001408
EISBN: 978-1-62708-173-3
... a table that lists the electrodes and welding rods suitable for use as filler metals in the welding of martensitic stainless steels. It provides specific arc welding procedural recommendations for the commonly welded martensitic stainless steels. Martensitic stainless steel joining methods such as laser...
Abstract
This article describes general welding characteristics such as weld microstructure and weldability. The correlations of preheating and postweld heat treatment practices with carbon contents and welding characteristics of martensitic stainless steels are reviewed. The article contains a table that lists the electrodes and welding rods suitable for use as filler metals in the welding of martensitic stainless steels. It provides specific arc welding procedural recommendations for the commonly welded martensitic stainless steels. Martensitic stainless steel joining methods such as laser-and electron-beam welding, resistance welding, flash welding, and friction welding, are discussed.
Image
Published: 15 June 2020
Fig. 8 Representative microstructures of copper-tin alloys processed with laser powder-bed fusion. Note that the magnification is different in each image. For each composition, the microstructure consists of columnar grains aligned with the build direction. (a) Cu-4Sn is entirely α-Cu(Sn
More
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002168
EISBN: 978-1-62708-188-7
..., surfacing, glazing, annealing … … Yes Yes Yes Yes Process capabilities of Nd:YAG lasers by power range Table 2 Process capabilities of Nd:YAG lasers by power range <100 W 150–200 W 200–400 W Microwelding, soldering, marking Yes … … Seam welds, spot welds, maximum...
Abstract
Laser beam machining removes, melts, or thermally modifies a material by focusing a coherent beam of monochromatic light on the workpiece. This article describes the principal lasers used in metal processing: neodymium-glass, carbon dioxide, and neodymium-doped yttrium aluminum garnet lasers. It discusses the operating parameters of concern in percussion drilling and trepanning. The process variables in surface treatment and laser cutting, as well as the operating parameters of concern in laser welding are reviewed. The article also explains the various categories of surface treatment: heat treating, cladding, surfacing, glazing, and marking.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006561
EISBN: 978-1-62708-290-7
... could affect mechanical and physical properties ( Ref 3 ). Fig. 1 General regions of annealing processes in the iron-carbon phase diagram Stress relief effectively eliminates residual stress incurred in as-fabricated laser-melted iron, as shown in Fig. 2 ( Ref 3 ). Titanium-alloy parts...
Abstract
This article focuses on various vacuum heat treating processes for additively manufactured parts, namely annealing and stress relieving, solid-solution annealing, and solution treating and aging. It addresses several practical concerns involved in using vacuum heat treatment, including temperature measurement, unvented cavities, loose powder, and direct contact of metals in the high-temperature vacuum. The article provides a short discussion on sintering and evaporation of metals in vacuum furnaces.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006579
EISBN: 978-1-62708-290-7
... effectively lowers the thermal conductivity and minimizes global thermal gradients in processing. The densities and properties reported for EBM copper are comparable to wrought and annealed OFE copper products (e.g., 99.99% density, 50 ppm oxygen). Copper produced with both laser and electron beam melting PBF...
Abstract
This article is a detailed account of additive manufacturing (AM) processes for copper and copper alloys such as copper-chromium alloys, GRCop, oxide-dispersion-strengthened copper, copper-nickel alloys, copper-tin alloys, copper-zinc alloys, and copper-base shape memory alloys. The AM processes include binder jetting, ultrasonic additive manufacturing, directed-energy deposition, laser powder-bed fusion, and electron beam powder-bed fusion. The article presents a review of the literature and state of the art for copper alloy AM and features data on AM processes and industrial practices, copper alloys used, selected applications, material properties, and where applicable, compares these data and properties to traditionally processed materials. The data presented and the surrounding discussion focus on bulk metallurgical processing of copper components. The discussion covers the composition and performance criteria for copper alloys that have been reported for AM and discusses key differences in process-structure-property relationships compared to conventionally processed material. The article also provides information on feedstock considerations for copper powder handling.
Book Chapter
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006581
EISBN: 978-1-62708-290-7
... of testing ( Ref 27 ). Ti-6Al-4V The AMS 4999 specification lists the minimum mechanical properties for laser AM-produced annealed Ti-6Al-4V in Table 3 ( Ref 36 ), where x is in the direction of deposition, y is transverse to the x -direction and in the plane of deposition, and z...
Abstract
Titanium alloys are known for their high-temperature strength, good fracture resistance, low specific gravity, and excellent resistance to corrosion. Ti-6Al-4V is the most commonly used titanium alloy in the aerospace, aircraft, automotive, and biomedical industries. This article discusses various additive manufacturing (AM) technologies for processing titanium and its alloys. These include directed-energy deposition (DED), powder-bed fusion (PBF), and sheet lamination. The discussion covers the effect of AM on the microstructures of the materials deposited, static and mechanical properties, and fatigue strength and fracture toughness of Ti-6Al-4V.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001398
EISBN: 978-1-62708-173-3
... Abstract Laser soldering uses a well-focused, highly controlled beam to deliver energy to a desired location for a precisely measured length of time. This article focuses on two types of laser soldering operations, namely, blind laser soldering and intelligent laser soldering. It discusses...
Abstract
Laser soldering uses a well-focused, highly controlled beam to deliver energy to a desired location for a precisely measured length of time. This article focuses on two types of laser soldering operations, namely, blind laser soldering and intelligent laser soldering. It discusses the function of the blind laser soldering and provides a brief description on key attributes of the blind laser soldering, including repeatability, speed, quality, safety, and flexibility. The article explores the function of the intelligent laser soldering and concludes with a section on key attributes of the intelligent laser soldering. The key attributes of the intelligent laser soldering include repeatability, speed, quality, safety, cost, and flexibility.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005808
EISBN: 978-1-62708-165-8
... treatment ion plating laser annealing laser cladding laser shock peening laser surface hardening nonferrous alloys physical vapor deposition sputter deposition thermokinetic phase transformations THE MANUFACTURING COST, energy consumption, and service life of components and tools are major...
Abstract
Laser surface hardening is a noncontact process that provides a chemically inert and clean environment as well as flexible integration with operating systems. This article provides a brief discussion on the various conventional surface-modification techniques to enhance the surface and mechanical properties of ferrous and nonferrous alloys. The techniques are physical vapor deposition, chemical vapor deposition, sputtering, ion plating, electroplating, electroless plating, and displacement plating. The article describes five categories of laser surface modification, namely, laser surface heat treatment, laser surface melting such as skin melting or glazing, laser direct metal deposition such as cladding, alloying, and hardfacing, laser physical vapor deposition, and laser shock peening. The article provides detailed information on absorptivity, laser scanning technology, and thermokinetic phase transformations. It also describes the influence of cooling rate on laser heat treatment and the effect of processing parameters on temperature, microstructure, and case depth hardness.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0009211
EISBN: 978-1-62708-194-8
... is on the mechanical properties of AM-processed Ti-6Al-4V, IN-625, and IN-718. Ti-6Al-4V The AMS 4999 specification lists the minimum mechanical properties for laser AM-produced annealed Ti-6Al-4V in Table 3 ( Ref 15 ), where x is in the direction of deposition, y is transverse to the x -direction...
Abstract
This article reviews the emerging manufacturing technology that is alternatively called additive manufacturing (AM), direct digital manufacturing, free-form fabrication, three-dimensional (3-D) printing, and so on. It provides a broad contextual overview of metallic AM. The article focuses on the mechanical properties of AM-processed Ti-6Al-4V, IN-625, and IN-718. The development of closed-loop, real-time, sensing, and control systems is essential to the qualification and advancement of AM. This involves the development of coupled process-microstructural models, sensor technology, and control methods and algorithms. AM has the potential to revolutionize the global parts manufacturing and logistics landscape. It enables distributed manufacturing and the productions of parts on demand while offering the potential to reduce cost, energy consumption, and carbon footprint. The article explores the materials science, processes, and business considerations associated with achieving these performance gains. It concludes that a paradigm shift is required to fully exploit AM potential.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006296
EISBN: 978-1-62708-179-5
... treatment of cast iron. It provides information on stress relieving, annealing, normalizing, through hardening, and surface hardening of these castings. The article discusses general considerations for the heat treatment of cast iron. Cast irons are occasionally nitrided for various applications...
Abstract
Cast irons, like steels, are iron-carbon alloys but with higher carbon levels than steels to take advantage of eutectic solidification in the binary iron-carbon system. This article introduces the solid-state heat treatment of iron castings and describes the various processes of heat treatment of cast iron. It provides information on stress relieving, annealing, normalizing, through hardening, and surface hardening of these castings. The article discusses general considerations for the heat treatment of cast iron. Cast irons are occasionally nitrided for various applications with the aim of enhancing surface hardness and corrosion resistance of the products. The article describes molten salt bath cyaniding and ion nitriding of cast iron.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006549
EISBN: 978-1-62708-290-7
... Computer-controlled system used to manage and synchronize the various components and processing parameters in an automated fashion Heat Sources Directed-energy deposition uses several heat sources to melt and deposit material, the most prevalent being laser beams, electron beams, and electric arcs...
Abstract
This article presents a detailed account of directed-energy deposition (DED) processes that are used for additive manufacturing (AM) of metallic materials. It begins with a process overview and a description of the components of DED systems followed by sections providing information on the process involved in DED and the materials used for DED. The postprocessing applied to the material after deposition is then covered. The article discusses the properties of metallic materials produced by using DED and ends with a discussion on applications for DED processes in various industries.
Book Chapter
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005644
EISBN: 978-1-62708-174-0
... used in repair of castings and production of welded assemblies. Filler materials are cast iron, low-carbon steel, nickel-base alloys, copper-base alloys Ductile irons Most fusion processes Welding should be done on fully annealed material. Composition affects weld quality. For MIG, a 60Ni-4Fe...
Abstract
Weldability refers to the ease of welding a material under the imposed fabrication conditions to perform satisfactorily during service. This article is a comprehensive collection of tables that summarize the general weldability of cast irons, steels, nonferrous metals, and their alloys by common fusion welding processes.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005106
EISBN: 978-1-62708-186-3
..., mm (in.) … … 0.75 (0.030) 1.3 (0.050) 1.3 (0.050) 1.3 (0.050) Cladding, surfacing, glazing, annealing … … Yes Yes Yes Yes Source: Ref 2 Process capabilities of Nd:YAG lasers by power range Table 3 Process capabilities of Nd:YAG lasers by power range <100 W 150...
Abstract
Cutting with lasers is accomplished with carbon dioxide (CO 2 ) and neodymium: yttrium-aluminum-garnet (Nd:YAG) lasers. This article provides a description of the process variables and principles of laser cutting. It discusses the three basic types of CO 2 gas lasers, namely, slow axial flow, transverse flow, and fast axial flow and reviews the applications of Nd:YAG laser. The article describes the basic parameters in the laser-cutting process: beam quality, power, travel speed, nozzles design, and focal-point position. Several material conditions that affect the quality of the laser cut are also discussed. The article provides information on the basic laser-cutting system and its optional equipment. A general description of how well each metal group can be cut is also provided.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006576
EISBN: 978-1-62708-290-7
... Abstract This article provides a brief overview of additive manufacturing (AM) of tool steels via various AM technologies such as laser powder bed fusion, electron powder bed fusion, blown powder directed energy deposition, and binder jet AM. The discussion includes process overview and covers...
Abstract
This article provides a brief overview of additive manufacturing (AM) of tool steels via various AM technologies such as laser powder bed fusion, electron powder bed fusion, blown powder directed energy deposition, and binder jet AM. The discussion includes process overview and covers the mechanism, advantages, and applications of each of these techniques.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001305
EISBN: 978-1-62708-170-2
... and laser surface processing. Surface hardening techniques, namely, nitriding, carburizing, boriding, and flame hardening, performed to improve the resistance of stainless steel alloys are also reviewed. acid cleaning acid descaling alkaline cleaning boriding buffing carburizing electrocleaning...
Abstract
Passivation; pickling, that is, acid descaling; electropolishing; and mechanical cleaning are important surface treatments for the successful performance of stainless steel used for piping, pressure vessels, tanks, and machined parts in a wide variety of applications. This article provides an overview of the various types of stainless steels and describes the commonly used cleaning methods, namely, alkaline cleaning, emulsion cleaning, solvent cleaning, vapor degreasing, ultrasonic cleaning, and acid cleaning. Finishing operations of stainless steels, such as grinding, polishing, and buffing, are reviewed. The article also explains the procedures of electrocleaning, electropolishing, electroplating, painting, surface blackening, coloring, terne coatings, and thermal spraying. It includes useful information on the surface modification of stainless steels, namely, ion implantation and laser surface processing. Surface hardening techniques, namely, nitriding, carburizing, boriding, and flame hardening, performed to improve the resistance of stainless steel alloys are also reviewed.
1