Skip Nav Destination
Close Modal
Search Results for
laplanche diagram
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-4 of 4 Search Results for
laplanche diagram
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 31 August 2017
Fig. 3 Structural diagrams for cast iron. (a) Maurer diagram. (b) Laplanche diagram. Source: Ref 9
More
Image
Published: 01 December 2008
Fig. 22 Structural diagrams for cast iron. (a) Maurer diagram. (b) Laplanche diagram. See also Fig. 23 . Source: Ref 29
More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005190
EISBN: 978-1-62708-187-0
... is the calculation of structure-composition correlations. The article concludes with information on the structural diagrams for cast iron: the Maurer diagram and the Laplanche diagram. cast iron deoxidation desulfurization iron-carbon system iron-silicon system laplanche diagram maurer diagram...
Abstract
This article addresses two issues on thermodynamics, namely, the calculation of solubility lines and the calculation of the activity of various components. It discusses alloying elements in terms of their influence on the activity of carbon. The article describes the desulfurization and deoxidation of cast iron and steel. It illustrates the thermodynamics of the iron-carbon system and the iron-silicon system. The article examines solubility and saturation degrees of carbon in multicomponent iron-carbon systems. One of the main applications of the thermodynamics of the iron-carbon system is the calculation of structure-composition correlations. The article concludes with information on the structural diagrams for cast iron: the Maurer diagram and the Laplanche diagram.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006334
EISBN: 978-1-62708-179-5
... to specify graphitization potential is the structural diagram developed by Maurer ( Ref 8 ) and subsequently refined by Laplanche ( Ref 9 ). In evaluating the structure-composition relations of cast iron, the so-called structural diagram developed by Maurer diagram ( Fig. 3 ) plots the extent...
Abstract
This article describes different methods by which the composition of cast iron can be analyzed. It provides particular emphasis on the methods for evaluating the graphitization potential of a melt with prescribed limits on carbon, silicon, and alloying elements. The article discusses the effect of cooling rate on the graphitization of a given composition by chill and wedge tests. Thermal analysis of cooling curves gives excellent information about the solidification and subsequent cooling of cast iron alloys. The article presents some applications of the cooling curve analysis and explains the evaluation of carbon-silicon contents, graphite shape, graphite nucleation, and contraction-expansion balance. It illustrates the use of an immersion steel sampling device for compacted graphite iron production and provides information on the ferrite-pearlite ratio in ductile iron.