Skip Nav Destination
Close Modal
Search Results for
kaufman
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 291
Search Results for kaufman
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 27 April 2016
Source: L. Kaufman and H. Nesor, Calculation of Superalloy Phase Diagrams: Part IV, Metall. Trans. A , Vol 6, 1975, p 2123–2131 ( Ref 6 )
More
Image
Published: 27 April 2016
Source: L. Kaufman and H. Nesor, Calculation of Superalloy Phase Diagrams: Part IV, Metall. Trans. A , Vol 6, 1975, p 2123–2131 ( Ref 6 )
More
Image
Published: 27 April 2016
Source: L. Kaufman and H. Nesor, Calculation of Superalloy Phase Diagrams: Part IV, Metall. Trans. A , Vol 6, 1975, p 2123–2131 ( Ref 6 )
More
Image
Published: 27 April 2016
Source: L. Kaufman and H. Nesor, Calculation of Superalloy Phase Diagrams: Part I, Metall. Trans ., Vol 5, 1974, p 1617–1621 ( Ref 8 )
More
Image
Published: 27 April 2016
Source: L. Kaufman and H. Nesor, Calculation of Superalloy Phase Diagrams: Part I, Metall. Trans ., Vol 5, 1974, p 1617–1621 ( Ref 8 )
More
Image
Published: 27 April 2016
Source: L. Kaufman and H. Nesor, Calculation of Superalloy Phase Diagrams: Part I, Metall. Trans ., Vol 5, 1974, p 1617–1621 ( Ref 8 )
More
Image
Published: 27 April 2016
Source: L. Kaufman and H. Nesor, Calculation of Superalloy Phase Diagrams: Part IV, Metall. Trans. A , Vol 6, 1975, p 2123–2131 ( Ref 6 )
More
Image
Published: 27 April 2016
Source: L. Kaufman and H. Nesor, Calculation of Superalloy Phase Diagrams: Part IV, Metall. Trans. A , Vol 6, 1975, p 2123–2131 ( Ref 6 )
More
Image
Published: 27 April 2016
Source: L. Kaufman and H. Nesor, Calculation of Superalloy Phase Diagrams: Part IV, Metall. Trans. A , Vol 6, 1975, p 2123–2131 ( Ref 1 )
More
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003815
EISBN: 978-1-62708-183-2
Abstract
This article focuses on the various forms of corrosion that occur in the passive range of aluminum and its alloys. It discusses pitting corrosion, galvanic corrosion, deposition corrosion, intergranular corrosion, stress-corrosion cracking, exfoliation corrosion, corrosion fatigue, erosion-corrosion, atmospheric corrosion, filiform corrosion, and corrosion in water and soils. The article describes the effects of composition, microstructure, stress-intensity factor, and nonmetallic building materials on the corrosion behavior of aluminum and its alloys. It also provides information on the corrosion resistance of anodized aluminum in contact with foods, pharmaceuticals, and chemicals.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006505
EISBN: 978-1-62708-207-5
Abstract
The purity of aluminum is generally characterized in one of two ways, by terminology or by the Aluminum Association designation system. This article reviews the properties of pure aluminum in purities from 99.99 percent through commercial purity, 99.00 percent. The mechanical properties of aluminum are discussed in terms of tensile properties, stress-strain relationships, and creep. The article also reviews the physical properties of aluminum, such as atomic structure and nuclear properties, atomic spectrum, crystal structure, density, thermal expansion, and thermal conductivity. It discusses the chemical properties of aluminum and presents a summary tabulation of the mechanical strength, ductility, and hardness of pure aluminum.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006626
EISBN: 978-1-62708-210-5
... Association, published periodically Aluminum and Aluminum Alloys , Knovel.com , Elsevier, New York, updated periodically J.G. Kaufman, Ed., Properties of Aluminum Alloys: Tensile, Creep, and Fatigue Data at High and Low Temperatures , The Aluminum Association and ASM International, 1999 J.G...
Abstract
This article contains tables that list typical room-temperature physical properties of wrought aluminum alloys in engineering units and metric units.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006543
EISBN: 978-1-62708-210-5
Abstract
This article summarizes the characteristics, material properties, and typical applications of aluminum alloy wrought products. It describes the most widely used worldwide alloy designation system and discusses five major categories, namely flat-rolled products; rod, bar, and wire; tubular products; shapes; and forgings. The article also discusses three widely used indexes to define the fracture resistance of aluminum alloys: notch toughness, tear resistance, and plane-strain fracture toughness. It also describes three types of corrosion attack of these alloys: general or atmospheric surface corrosion, stress-corrosion cracking, and exfoliation attack.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006544
EISBN: 978-1-62708-210-5
Abstract
Understanding the mechanical properties of aluminum alloys is useful for the designer for choosing the best alloy and establishing appropriate allowable stress values, and for the aluminum producer to control the fabrication processes. This article discusses the nature and significance of mechanical property data and of stress-strain curves detailing the effects of mechanical properties on the design and selection of aluminum alloys. The properties include tensile, compressive, shear, bearing, creep and creep-rupture, fatigue, and fracture resistance properties.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006545
EISBN: 978-1-62708-210-5
Abstract
In high-strength aluminum alloys, stress-corrosion cracking (SCC) is known to occur in ordinary atmospheres and aqueous environments. This article discusses the mechanisms of SCC in aluminum alloys, providing information on two main types of SCC models: those of anodic dissolution based on electrochemical theory and those that involve the stress-sorption theory of mechanical fracture. It reviews three different categories of experiments used to compare SCC performance of candidate materials for service. The categories are tests on statically loaded smooth samples, tests on statically loaded precracked samples, and tests using slowly straining samples. The article describes SCC susceptibility and ratings of SCC resistance for high-strength wrought aluminum products, such as 2xxx, 5xxx, and 7xxx series alloys, aluminum-lithium alloys, and 7xxx alloys containing copper.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006546
EISBN: 978-1-62708-210-5
Abstract
Aluminum and its alloys are highly corrosion resistant, protected by a self-healing oxide film that effectively passivates the underlying surface. This article examines the various processes by which the protective layer can be breached and the types of corrosion that can occur. It describes pitting, galvanic, and atmospheric corrosion as well as stress-corrosion cracking, corrosion fatigue, and erosion corrosion. It also covers intergranular, exfoliation, filiform, deposition, and crevice corrosion and special cases of corrosion in soils, seawater, and automotive coolant systems. The article provides an extensive amount of data as well as information on coatings, claddings, and cathodic protection methods; the effects of composition, microstructure, and surface treatments; and the compatibility of aluminum with food and various household and industrial chemicals.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006548
EISBN: 978-1-62708-210-5
Abstract
This article aims to comprehensively review and summarize the material properties and engineering data for aluminum alloy castings and their many applications. The discussion focuses on conventional sand, permanent mold, and die castings as well as the premium engineered versions of some alloys. The article provides a summary of aluminum casting alloy designations of The Aluminum Association, the Unified Numbering System, and specific alloys considered premium strength by definition and by ASTM International and Aerospace Material Specifications. A distillation of data from published industry sources is given for a wide range of the properties and performance characteristics for topics such as: physical and thermophysical properties, typical and minimum mechanical properties, fatigue resistance, fracture resistance, and subcritical crack growth.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006549
EISBN: 978-1-62708-210-5
Abstract
This article describes the effects of cyclic fatigue properties on aluminum alloys. It provides a discussion on strain-control fatigue and the effects of two microstructural features on the strain life of aluminum alloys: shearable precipitates and precipitate-free zones. The article discusses various models of fatigue crack growth (FCG) and the effects of alloy microstructure and composition on FCG.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006457
EISBN: 978-1-62708-210-5
Abstract
This article discusses the concepts underlying linear elastic fracture mechanics and elastic-plastic fracture mechanics as well as their importance in characterizing the fracture behavior of the high-strength aluminum alloys. It describes the three methods used for analyzing elastic-plastic fracture, namely R-curve concept, J-integral concept, and crack tip opening displacement method. The article considers the primary measures used to assess the toughness of aluminum alloy castings and wrought alloys: notch toughness, tear resistance, and plane-strain fracture toughness.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006244
EISBN: 978-1-62708-163-4
...) Ternary Phase Diagrams.” Nb-Ti-W Isothermal Section at 1000 °C Source: L. Kaufman and H. Nesor, Calculation of Superalloy Phase Diagrams: Part IV, Metall. Trans. A , Vol 6, 1975, p 2123–2131 ( Ref 1 ) Nb-Ti-W Isothermal Section at 600 °C Source: V.I. Levanov, V.S. Mikheyev, and A.I...
Abstract
This article is a compilation of ternary alloy phase diagrams for which niobium (Nb) is the first-named element in the ternary system. The diagrams are presented with element compositions in weight percent. The article includes 2 phase diagrams: Nb-Ti-W isothermal section at 600 °C; and Nb-Ti-W isothermal section at 1000 °C.
1