1-20 of 1277

Search Results for joining

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

By Toby Padfield
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006501
EISBN: 978-1-62708-207-5
... Abstract This article compares and contrasts mechanical joining techniques used in the manufacture of aluminum assemblies, including seaming, swaging, flanging, crimping, clinching, dimpling, interference and snap fits, and interlocking joints. It provides basic illustrations of the various...
Book Chapter

By Peter K. Sokolowski
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006108
EISBN: 978-1-62708-175-7
... Abstract This article characterizes the physical differences between powder metallurgy (PM) and wrought or cast materials, as they apply to joining. It discusses acceptable joining procedures and techniques, including welding and brazing and solid-state methods. Information on the weldability...
Book Chapter

By Robert W. Messler, Jr.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005551
EISBN: 978-1-62708-174-0
... Abstract Joining is key to the manufacture of large or complex devices or assemblies; construction of large and complex structures; and repair of parts, assemblies, or structures in service. This article describes the three forces for joining: physical, chemical, and mechanical. It provides...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0009154
EISBN: 978-1-62708-186-3
... Abstract Mechanical joining by forming includes all processes where parts being joined are formed locally and sometimes fully. This article focuses on the types, advantages, disadvantages, and applications of the various mechanical joining methods, namely, riveting, crimping, clinching...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003425
EISBN: 978-1-62708-195-5
... information on different types of joints, namely, fastened, adhesive bonded, dual polymer bonded, co-consolidated, and welded joints. It explains the joining methods of thermoplastic composites, such as press forming, diaphragm forming, autoclaving, ultrasonic welding, resistance welding, and induction...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003205
EISBN: 978-1-62708-199-3
... Abstract This article discusses different types of joining processes, including welding, brazing, soldering, mechanical fastening, and adhesive bonding. It examines two broad classes of welding: fusion welding and solid-state welding. The article discusses the process selection considerations...
Book Chapter

By K. Sampath
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002488
EISBN: 978-1-62708-194-8
... Abstract This article explains how to design a joint or conduct a joining process so that components can be produced most efficiently and without defects. The joining processes include mechanical fastening, adhesive bonding, welding, brazing, and soldering. The article discusses the selection...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003056
EISBN: 978-1-62708-200-6
... Abstract Many applications of ceramics and glasses require them to be joined to each other or to other materials such as metals. This article focuses on ceramic joining technologies, including glass-metal sealing, glass-ceramic/metal joining, ceramic-metal joining, ceramic-ceramic joining...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003043
EISBN: 978-1-62708-200-6
... Abstract The structural efficiency of a composite structure is established by its joints and assembly. Adhesive bonding, mechanical fastening, and fusion bonding are three types of joining methods for polymer-matrix composites. This article provides information on surface treatment...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003021
EISBN: 978-1-62708-200-6
... Abstract This article discusses the classification of the attachment and joining methods in plastics, including mechanical fastening, adhesive bonding, solvent bonding, and welding. It describes the mechanical fastening techniques used to join both similar and dissimilar materials with machine...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001470
EISBN: 978-1-62708-173-3
... Abstract Efforts in improving the efficiency of automated equipment lead to combining automatic joining equipment with a modem computer technique eventually known as artificial intelligence (intelligent automation) that usually includes an off-line planning system and a real-time adaptive...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001442
EISBN: 978-1-62708-173-3
... steel weld cladding and the factors influencing joint integrity in dissimilar metal joining. It concludes with a discussion on joining carbon and low-alloy steels to various dissimilar materials (both ferrous and nonferrous) by arc welding. arc welding buildup alloys carbon steel dissimilar...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001461
EISBN: 978-1-62708-173-3
... Abstract This is an introductory article to special welding and joining topics focusing on various unique aspects related to three major joining technologies, namely, welding, brazing, and soldering. brazing joining soldering welding WELDING, BRAZING, AND SOLDERING are pervasive...
Book Chapter

By L.J. Hart-Smith
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001466
EISBN: 978-1-62708-173-3
... they join that all failures will occur outside the joint. The necessary steps are not difficult, but are often omitted because of a failure to appreciate the need for them. Unfortunately, the importance of surface preparation for the adhesive bonding of fibrous composites is not widely acknowledged...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001467
EISBN: 978-1-62708-173-3
... welding that can be rectified by suitable designing considerations. This article discusses certain successful design strategies employed in joining ODS alloys in consideration with the grain structure. It further provides a brief discussion on different welding processes involved in joining ODS materials...
Book Chapter

By Raymond E. Bohlmann
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001468
EISBN: 978-1-62708-173-3
... Abstract This article discusses the material combinations, design details, and fabrication processes considered in the adhesive bonding or melt-fuse interface (amorphous bond) bonding method of joining resin-matrix composites to metals. adhesive bonding bolted joints bonded joints...
Image
Published: 01 November 1995
Fig. 20 Process of electrical joining. (a) Coating samples with joining paste by screen printing. (b) Setting up in a joining fixture. (c) Preheating by gas flame to 700 to 800 °C (1290 to 1470 °F). (d) Joule heating by electric current through joining paste. (e) Cooling. Source: Ref 99 More
Image
Published: 01 January 1986
Fig. 9 Section through an arc butt weld joining two 13-mm (0.5-in.) thick ASTM A517, grade J, steel plates. The schematic shows the fusion zone, the heat-affected zone, and base metal. Etched using 2% nital. 4× More
Image
Published: 01 January 1987
Fig. 27 Striations on two joining, independent fatigue crack fronts on a fracture surface of aluminum alloy 6061-T6. The two arrows indicate direction of local crack propagation. TEM p-c replica More
Image
Published: 01 January 1987
Fig. 209 View of the weld joining the flange and reinforcement plate at top in Fig. 208 , showing a crack at the toe of the weld. This crack was present before the fatigue crack, which led to fracture, formed at the toe of the weld in the other flange. See also Fig. 210 . 2× More