1-20 of 528 Search Results for

jet plating

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006395
EISBN: 978-1-62708-192-4
... the four layers of a plating system, namely, top or finish coat, undercoat, strike or flash, and base material layers. The article describes various plating methods, such as pulse electroplating, electroless plating, brush plating, and jet plating. It reviews the types of electrodeposited coatings...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006570
EISBN: 978-1-62708-290-7
...Abstract Abstract This article describes post-processing techniques for machining, finishing, heat treating, and deburring used to remove additive manufacturing (AM) metallic workpieces from a base plate and subsequent techniques to enhance printed workpieces. The AM processes include powder...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005713
EISBN: 978-1-62708-171-9
... known as high-velocity oxyfuel (HVOF) was invented by G.H. Smith, J.F. Pelton, and R.C. Eschenbach (U.S. Patent 2,861,900). The process was initially used only by Union Carbide, with the coatings sold in the 1960s to 1970s on a service basis as Jet Plating coatings. The process was reintroduced...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001351
EISBN: 978-1-62708-173-3
.... Circumferential techniques are used to produce tube-to-tube welds or tubular clads. Spot welding and seam welding techniques, as well as others, are also used in certain situations. All of these techniques require the jet to travel in a straight line between the two metal surfaces (see the section “Flyer Plate...
Book Chapter

Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005816
EISBN: 978-1-62708-165-8
... Impinging on a Hot Surface , Sixth International Heat Transfer Conference ( Toronto, ON, Canada ), 1987 , p 445 – 450 44. Robidou H. , Auracher H. , Gardin P. , and Lebouche M. , Controlled Cooling of a Hot Plate with a Water Jet , Exp. Therm. Fluid Sci. , Vol 26 , 2002...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005602
EISBN: 978-1-62708-174-0
... clad metal specifications: During World War II, it was discovered that a hollowed explosive charge lined with metal could be used to produce a high-energy jet to perforate armor plate. Several investigators ( Ref 24 , 25 , 26 ) have described the limiting conditions for the formation of jets...
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002156
EISBN: 978-1-62708-188-7
...Abstract Abstract Abrasive jet machining (AJM) is a process that removes material from a workpiece through the use of abrasive particles entrained in a high-velocity gas stream. This article discusses the operation of principal components, advantages, and disadvantages of the AJM system...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001449
EISBN: 978-1-62708-173-3
... to achieve dynamic yielding and welding Fig. 5 Jet formation at the collision point to generate weld during EXW Fig. 6 Photomicrograph showing typical wavy weld interface obtained when niobium and copper are joined by EXW Fig. 7 Relationship of wavelength to plate thickness...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006551
EISBN: 978-1-62708-290-7
... the layer is completed, the build plate lowers ( z -axis) by the distance of one layer thickness to accommodate the jetting of the subsequent layer. Once the support material is removed, additional finishing steps are sometimes administered. To make translucent models (e.g., Stratasys’ VeroClear resin...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001247
EISBN: 978-1-62708-170-2
... is to be plated, jet plating methods may sometimes be used, rather than constructing a very large plating tank. In the jet technique, a steady stream of solution impinges against the part to be plated until the required thickness of plate is obtained. Because of the rapid movement of the solution, very high...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006558
EISBN: 978-1-62708-290-7
... 4,873,399 , 1989 , https://patentimages.storage.googleapis.com/03/a4/82/8027dc218cacfe/US4873399.pdf 2. Kim S.H. , Hong K. , Lee K.H. , and Frisbie C.D. , Performance and Stability of Aerosol-Jet-Printed Electrolyte-Gated Transistors Based on Poly(3-hexylthiophene) , ACS Appl...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003424
EISBN: 978-1-62708-195-5
..., diamond plated, brazed diamond, diamond coated carbide, and polycrystalline cutting tools. The article also describes cutting tool materials that are used for peripheral milling, face milling, and the trimming of polymer-matrix composites. machining carbon fiber-reinforced epoxy epoxy thermoset...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005130
EISBN: 978-1-62708-186-3
... mechanical property microstructure plasma torch plates sheets stainless steel thermal forming THERMAL FORMING OF METALS refers to the development of permanent deformation without the application of external mechanical forces. It is based on the fundamental physical principle that most metals...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003209
EISBN: 978-1-62708-199-3
... Explosion bonding is a cold pressure welding process in which the contaminant surface films are plastically jetted off the base metals as a result of the high-pressure collision of the two metals. During the high-velocity collision of metal plates, a jet is formed between the metal plates if the collision...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006569
EISBN: 978-1-62708-290-7
... Fig. 2 (a) Image of a layer of powder in mid-print in the binder jet process and (b) depowdering after the curing step. Source: Ref 29 Fig. 3 Sintering shrinkage as a function of green density. Adapted from Ref 33 Fig. 4 Microstructure of a binder jet part showing...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006583
EISBN: 978-1-62708-290-7
..., electron beam melting, and binder jet three-dimensional (3-D) printing, and feedstock methods, such as fused-filament fabrication and thermoplastic 3-D printing. It discusses the characteristics, processing steps, properties, advantages, limitations, and applications of these technologies. binder...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001232
EISBN: 978-1-62708-170-2
... a brief discussion on abrasive jet machining and ultrasonic machining. It concludes with a discussion on the four categories of factors that affect the abrasive finishing or machining: machine tool, work material, wheel selection, and operational. abrasive belt grinding abrasive belt polishing...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006573
EISBN: 978-1-62708-290-7
... orientation and crack growth direction: build orientations of (g) 0 and (h) 90°. Source: Ref 35 Fig. 3 Optical photographs from binder-jetted Co-Cr-Mo powder printed with saturation levels of 70 to 100% and sintered at (a) 1325 °C (2417 °F) for 3 h, (b) 1300 °C (237