Skip Nav Destination
Close Modal
Search Results for
isothermal phase transformation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 424 Search Results for
isothermal phase transformation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003723
EISBN: 978-1-62708-177-1
... the use of equilibrium binary phase diagrams as a tool in the interpretation of microstructures. It reviews an account of the two types of solid-state phase transformations: isothermal and athermal. The article discusses isothermal transformation and continuous cooling transformation diagrams which...
Abstract
This article introduces basic physical metallurgy concepts that may be useful for understanding and interpreting variations in metallographic features and how processing affects microstructure. It presents some basic concepts in structure-property relationships. The article describes the use of equilibrium binary phase diagrams as a tool in the interpretation of microstructures. It reviews an account of the two types of solid-state phase transformations: isothermal and athermal. The article discusses isothermal transformation and continuous cooling transformation diagrams which are useful in determining the conditions for proper heat treatment (solid-state transformation) of metals and alloys. The influence of the mechanisms of phase nucleation and growth on the morphology, size, and distribution of grains and second phases is also described.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006226
EISBN: 978-1-62708-163-4
... Abstract Similar to the eutectic group of invariant transformations is a group of peritectic reactions, in which a liquid and solid phase decomposes into a solid phase on cooling through the peritectic isotherm. This article describes the equilibrium freezing and nonequilibrium freezing...
Abstract
Similar to the eutectic group of invariant transformations is a group of peritectic reactions, in which a liquid and solid phase decomposes into a solid phase on cooling through the peritectic isotherm. This article describes the equilibrium freezing and nonequilibrium freezing of peritectic alloys. It informs that peritectic reactions or transformations are very common in the solidification of metals. The article discusses the formation of peritectic structures that can occur by three mechanisms: peritectic reaction, peritectic transformation, and direct precipitation of beta from the melt. It provides a discussion on the peritectic structures in iron-base alloys and concludes with information on multicomponent systems.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003195
EISBN: 978-1-62708-199-3
... Abstract This article presents an outline of the physical metallurgical principles that are associated with heat treating of steels. It describes the iron-carbon phase diagram and various types of transformation diagrams, including isothermal transformation diagrams, continuous heating...
Abstract
This article presents an outline of the physical metallurgical principles that are associated with heat treating of steels. It describes the iron-carbon phase diagram and various types of transformation diagrams, including isothermal transformation diagrams, continuous heating transformation diagrams, and continuous cooling transformation diagrams. The primary design criteria for heat treating of steels this article covers are the minimization of distortion and undesirable residual stresses. The article presents the theoretical and empirical guidelines to understand sources of common heat-treating defects and how they can be controlled. It also presents an example to demonstrate how thermal and transformation-induced strains cause dimensional changes and residual stresses.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003739
EISBN: 978-1-62708-177-1
... matrix phase is martensite. (b) Corresponding transmission electron micrograph illustrating subunits of lower bainite. Source: Ref 2 Fig. 16 Lower bainite in a 4360 steel specimen, austenitized, isothermally transformed at 300 °C (570 °F), and quenched. The matrix is untempered martensite...
Abstract
This article provides a discussion on the transformations of various categories of bainite in ferrous systems. These include upper bainite, lower bainite, inverse bainite, granular bainite, and columnar bainite. The article also provides information on the bainite transformations in nonferrous systems.
Book Chapter
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006250
EISBN: 978-1-62708-169-6
.... annealing castings deformation diffusion coefficient grain growth heat treatment heterogeneous nucleation homogeneous nucleation homogenization isothermal transformation nonferrous metals precipitation hardening recrystallization recrystallization temperature solid-state phase transformation...
Abstract
This article introduces the mechanism of diffusion and the common types of heat treatments such as annealing and precipitation hardening, which are applicable to most ferrous and nonferrous systems. Three distinct processes occur during annealing: recovery, recrystallization, and grain growth. The article also describes the various types of solid-state transformations such as isothermal transformation and athermal transformation, resulting from the heat treatment of nonferrous alloys. It provides information on the homogenization of chemical composition within a cast structure.
Image
in Physical Metallurgy Concepts in Interpretation of Microstructures
> Metallography and Microstructures
Published: 01 December 2004
Fig. 20 Isothermal transformation (IT) diagram for a eutectoid composition (∼0.8% C) of carbon steel (0.81C-0.07Si-0.65Mn, wt%). The IT curves show the time for the start and finish of austenite (γ) transformation into a two-phase structure consisting of ferrite (α) and the cementite carbide
More
Image
Published: 01 August 2013
Fig. 3 Schematic iron-carbon phase diagram (left). Austenitization time-temperature diagram illustrating kinetics of isothermal austenite formation upon heating (upper right) and time-temperature-transformation diagram representing isothermal austenite decomposition upon cooling (lower right
More
Book Chapter
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005819
EISBN: 978-1-62708-165-8
... ferrite heat treatment iron-carbon phase diagram isothermal transformation martensite pearlite residual stress steel thermal stress Introduction Heat treatment is roughly defined as controlled heating and cooling of a solid material, so as to change the microstructure and obtain specific...
Abstract
The heat treatment of steel is based on the physical metallurgical principles that relate to its processing, properties, and structure. The microstructures that result from the heat treatment of steel are composed of one or more phases in which the atoms of iron, carbon, and other elements in steel are associated. This article describes the phases of heat treated steel, and provides information on effect of temperature change and the size of carbon atoms relative to that of iron atoms during the heat treatment.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005962
EISBN: 978-1-62708-168-9
... in Copper Steels Numerous phases can form in multicomponent copper steels. These phases are formed at different transformation temperatures during heat treatment and coexist in the steel. The possible phases depend on the alloying elements present in the steel and the specific heat treatment procedures...
Abstract
Copper steels are precipitation-strengthened steels that are designed to have a unique combination of physical and mechanical properties. This article provides an overview of copper precipitate-strengthened steels and their applications, and discusses appropriate ASTM International standards. It describes the common phases and alloying elements present in copper precipitate-strengthened steels, and reviews the influences of alloying elements on processing, phase diagrams, microstructures, and mechanical properties. The article also discusses the thermomechanical process, solutionizing heat treatment, and isothermal aging in detail. It concludes with a review of the interrelationships between heat treatments, microstructures, and mechanical properties.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003734
EISBN: 978-1-62708-177-1
... monotectoid transformation pearlite peritectic reaction peritectoid transformation steel INVARIANT TRANSFORMATIONS are isothermal reversible reactions that occur at an invariant point on the phase diagram of an alloy, where the initial (parent) phase may be either a liquid or a crystalline solid...
Abstract
Solid-state transformations from invariant reactions are of three types: eutectoid, peritectoid, and monotectoid transformations. This article focuses on structures from eutectoid transformations with an emphasis on the classic iron-carbon system of steel. It illustrates the morphology of a pearlite nodule and the effect of various substitutional alloy elements on the eutectoid transformation temperature and effective carbon content, respectively. Peritectic and peritectoid phase equilibria are very common in several binary systems. The article reviews structures from peritectoid reactions and details the formation of peritectic structures that can occur by at least three mechanisms: peritectic reaction, peritectic transformation, and direct precipitation of beta from the melt.
Image
in Physical Metallurgy Concepts in Interpretation of Microstructures
> Metallography and Microstructures
Published: 01 December 2004
Fig. 42 Time-temperature diagram of precipitation responses of an aluminum-lithium alloy (alloy 8090) for volume formation of the S phase (Al 2 CuMg). This practical isothermal transformation curve is based on a real commercial-sized component that has been exposed to aging temperatures
More
Image
Published: 01 December 2004
Fig. 6 Microstructure of Fe-20 wt% Cu alloy sintered at 1150 °C (2100 °F) for 12 h and then isothermally held for 48 h at 810 °C (1490 °F) before being cooled to room temperature. The light phase is the massively transformed phase. Note the growth across parent grain boundaries. Reprinted
More
Image
Published: 01 December 2004
Fig. 24 Plates of a phase in α matrix of retained β phase with Ti 2 Ni precipitation at the plate boundaries in a Ti-4Ni alloy, solution treated at 1000 °C (1800 °F) for 20 min and isothermally transformed at 750 °C (1400 °F) for 1 h. 95% H 2 O, 4% HNO 3 , 1% HF. 1000×. Source: Ref 34
More
Image
Published: 01 December 2004
Fig. 23 Laths of a phase with interlath precipitation in a Cu-27.0Sn alloy, solution treated and isothermally transformed at 500 °C (930 °F) for 1 min. No etchant given. Source: Ref 33
More
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006300
EISBN: 978-1-62708-179-5
... that an isothermal transformation would proceed with long-range redistribution of substitutional solutes within the three-phase field but would follow the same rules as for the CCT transformation if proceeding at temperatures below the stable three-phase field. References References 1. Lacaze J...
Abstract
This article discusses the stable and metastable three-phase fields in the binary Fe-C phase diagram. It schematically illustrates that austenite decomposition requires accounting for nucleation and growth of ferrite and then nucleation and growth of pearlite in the remaining untransformed volume. The article describes the austenite decomposition to ferrite and pearlite in spheroidal graphite irons and lamellar graphite irons. It provides a discussion on modeling austenite decomposition to ferrite and pearlite.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006319
EISBN: 978-1-62708-179-5
... cycles microstructure THE TRANSFORMATION OF AUSTENITE upon cooling in steels is well documented. Isothermal (time-temperature transformation) and continuous cooling transformation diagrams (CCT) are used to represent the kinetics of transformation under different thermal cycles. General Features...
Abstract
The transformation of austenite of cast irons represents a more complex and less studied subject. This article discusses the general features of the decomposition of austenite into bainite. It describes the heat treatment cycles of austempered cast iron microstructure. The article reviews several factors, such as presence of graphite and austenite grain size, which affect the transformation rate of austenite during austempering of free-graphite cast irons.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001026
EISBN: 978-1-62708-161-0
... of the austenite varies with this temperature. Second, because the martensite forms by a diffusionless transformation, the martensite phase inherits the carbon content of the austenite, which is much higher than that of the original steel C o . Finally, because it is important to maintain the necessary carbon...
Abstract
Dual-phase steels are a new class of high-strength low alloy (HSLA) steels characterized by a microstructure consisting of about 20% hard martensite particles dispersed in a soft ductile ferrite matrix. In addition to high tensile strength, in the range of 550 MPa (80 ksi), dual-phase steels exhibit continuous yielding behavior, a low 0.2% offset yield strength, and a higher total elongation than other HSLA steels of similar strength. The article discusses some of the more pertinent aspects of dual-phase steels, such as heat treatment, microstructure, mechanical properties, chemical composition, and manufacturability. In general, these steels have a carbon content of less than 0.1%, which ensures that they can be spot welded. However, newer high-carbon dual-phase steels in development are generating interest due to their unique combination of total elongation and tensile strength.
Image
in Modeling of Microstructure Evolution during the Thermomechanical Processing of Titanium Alloys
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
Fig. 18 Comparison of measurements (data points, thin lines) and mesocale-model predictions (thick lines) of microstructure evolution in Beta-Cez. (a) Isothermal transformation kinetics at 800 °C for material prior-beta worked to develop different subgrain sizes. (b) Number of colonies
More
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005786
EISBN: 978-1-62708-165-8
... microstructure in many steels, which transforms during later processing or heat treatment to the microstructure desired in the particular steel alloy of interest. Austenitization refers to heating into the austenite phase field, during which the austenite structure is formed. Austenite is the high-temperature...
Abstract
Austenitization refers to heating into the austenite phase field, during which the austenite structure is formed. This article highlights the purpose of austenitization, and reviews the mechanism and importance of thermodynamics and kinetics of austenite structure using an iron-carbon binary phase diagram. It also describes the effects of austenite grain size, and provides useful information on controlling the austenite grain size using the thermomechanical process.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005787
EISBN: 978-1-62708-165-8
... no annealing process ever achieves true equilibrium conditions, it can closely parallel these conditions. In defining the various types of annealing, the transformation temperatures or critical temperatures are usually used. Fig. 2 Iron-carbon binary phase diagram with superimposed full annealing...
Abstract
Steels may be annealed to facilitate cold working or machining, to improve mechanical or electrical properties, or to promote dimensional stability. This article, using iron-carbon phase diagram, describes the types of annealing processes, namely, subcritical annealing, intercritical annealing, supercritical or full annealing, and process annealing. Spheroidizing is performed for improving the cold formability of steels. The article provides guidelines for annealing and tabulates the critical temperature values for selected carbon and low-alloy steels and recommended temperatures and time cycles for annealing of alloy steels and carbon steel forgings. Different combinations of annealed microstructure and hardness are significant in terms of machinability. Furnaces for annealing are of two basic types, batch furnaces and continuous furnaces. The article concludes with a description of the annealing processes for steel sheets and strips, forgings, bars, rods, wires, and plates.
1